
THE E XPER T ’S VOICE® IN OR ACLE

Oracle ADF
Survival
Guide

Mastering the Application
Development Framework
—
Building model-view-controller
applications that are easy to reuse
and maintain
—
Sten Vesterli

www.allitebooks.com

http://www.allitebooks.org

Oracle ADF
Survival Guide
Mastering the Application
Development Framework

Sten Vesterli

www.allitebooks.com

http://www.allitebooks.org

Oracle ADF Survival Guide

Sten Vesterli
Værløse, Denmark

ISBN-13 (pbk): 978-1-4842-2819-7 ISBN-13 (electronic): 978-1-4842-2820-3
DOI 10.1007/978-1-4842-2820-3

Library of Congress Control Number: 2017952558

Copyright © 2017 by Sten Vesterli

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Luc Bors
Coordinating Editor: Jill Balzano
Copy Editor: Brendan Frost

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484228197. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484228197
http://www.apress.com/source-code
http://www.allitebooks.org

For developers who are solving problems,
not just writing code

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xv

About the Technical Reviewer ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Chapter 1: Drag-and-Drop Building �� 1

 ■Chapter 2: ADF Enterprise Architecture ��������������������������������������� 33

 ■Chapter 3: Layout and Skins ��� 53

 ■Chapter 4: Business Logic �� 77

 ■Chapter 5: Presentation Logic �� 105

 ■Chapter 6: Logging and Debugging �� 137

 ■Chapter 7: Your ADF Workflow ��� 157

Index �� 187

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

www.apress.com
www.ioug.org
www.ioug.org/join
http://www.allitebooks.org

vii

Contents

About the Author ��� xv

About the Technical Reviewer ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Chapter 1: Drag-and-Drop Building �� 1

Anatomy of an ADF Application ��� 1

Business Services Layer ��� 2

User Interface Layer ��� 2

Binding Layer �� 3

Creating ADF Workspaces ��� 3

Database Business Components ��� 3

Keeping Organized ��� 5

The Demo Wizard �� 6

Testing Business Components �� 8

Entity Objects �� 9

View Objects ��� 11

Building Application Modules ��� 15

Graphical Navigation Flow Design ��� 16

Partitioning Your Applications ��� 16

Bounded and Unbounded Task Flows ��� 17

Creating Task Flows �� 18

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Drag-and-Drop Pages �� 20

Page Layout �� 20

Viewing Your Page �� 22

Adding Data-Bound Components ��� 24

Implementing Navigation �� 27

Examining Bindings ��� 28

Minimum Viable Product ��� 29

A Simple Master Page �� 29

Conclusion ��� 31

 ■Chapter 2: ADF Enterprise Architecture ��������������������������������������� 33

ADF Libraries ��� 33

Creating ADF Libraries �� 33

Managing ADF Libraries�� 34

Using ADF Libraries �� 34

ADF Architecture Models ��� 35

Simple ADF Architecture ��� 35

Modular ADF Architecture ��� 35

Enterprise ADF Architecture �� 37

Deploying ADF Applications �� 39

Business Component Code �� 39

Implicit Business Components ��� 40

Explicit Business Components �� 40

Your Own Base Classes �� 42

Using Templates �� 46

Page Template �� 46

Page Fragment Template �� 47

Task Flow Template �� 48

Application Skin �� 48

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Common Model ��� 48

Sharing Entity Objects �� 48

Sharing List of Value View Objects ��� 49

Building Subsystems ��� 49

Building the Master Application �� 50

Master Application Content �� 50

Security �� 50

Conclusion ��� 52

 ■Chapter 3: Layout and Skins ��� 53

Layout �� 53

Layout Managers vs� Fixed Formatting �� 54

Stretching and Nonstretching ��� 54

Quick Start Layouts �� 55

Using Panel Grid Layout �� 56

Using Panel Form Layout �� 59

Using Panel Collection Layout �� 60

Using Tabs and Accordions ��� 61

Other Layout Components �� 63

Responsive Design �� 63

Masonry Layout �� 63

Screen-Dependent Formatting ��� 66

Styling ��� 67

Inline Styles �� 68

Content Style �� 69

Label Style �� 69

Style Class �� 69

Conditional Styling �� 70

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Skinning �� 70

Working with Skins ��� 70

Setting Up the Theme Editor ��� 71

Creating a Skin ��� 72

Modifying a Skin ��� 73

Exporting a Skin ��� 74

Using a Skin �� 74

Testing �� 74

Working with the JDeveloper Skin Editor ��� 75

Conclusion ��� 76

 ■Chapter 4: Business Logic �� 77

Logic in Entity Objects ��� 77

Default Values ��� 78

Validation �� 80

Creating a Java Object �� 85

Accessors ��� 88

Working with the Database �� 90

Logic in View Objects �� 94

Creating Java Objects ��� 94

View Object Class Logic�� 96

View Row Class Logic ��� 98

View Accessors ��� 100

Logic in Application Modules��� 100

Overriding Application Module Functionality �� 101

Adding Custom Application Module Logic �� 102

Exposing Logic to Clients �� 102

Conclusion ��� 104

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

 ■Chapter 5: Presentation Logic �� 105

Prebuilt Validators ��� 105

Adding Managed Beans �� 108

Bean Classes �� 108

Bean Scope ��� 109

Adding a Bean to the User Interface ��� 110

Adding a Bean to a Task Flow ��� 113

Interacting with UI Components �� 113

Creating a Component Reference ��� 114

Connecting the Bean to the UI Components ��� 116

Interacting with Business Components ��� 117

The Binding Layer ��� 117

Accessing the Binding Layer �� 119

Accessing an Attribute Value �� 119

Accessing an Operation �� 120

Accessing an Iterator �� 121

Working with Selected Rows �� 123

Interacting with the User ��� 125

Default Message ��� 125

Message Related to a Component �� 126

Using a Message Area �� 128

Logic in Task Flows ��� 128

Calling Managed Beans Task Flows ��� 128

Using Business Logic in Task Flows ��� 129

How to Use Router Components ��� 129

■ Contents

xii

Task Flow Switching Logic �� 129

How Dynamic Regions Work ��� 130

Building the Master Page ��� 130

Storing State ��� 131

Using Stored State �� 132

Connecting the Beans ��� 133

Connecting Menu Items �� 134

Refreshing the Master Page ��� 135

Conclusion ��� 136

 ■Chapter 6: Logging and Debugging �� 137

Using ADF Logger �� 137

Adding Logging to Your Classes ��� 137

Configuring Logging ��� 140

Reading Logs �� 142

Normal Debugging �� 145

Setting a Breakpoint ��� 145

Running in Debug Mode ��� 146

Stepping Through Code �� 146

Gathering Information ��� 147

Debugging Task Flows �� 148

Debugging into ADF Libraries �� 149

Deploying Source Code ��� 150

Breaking in Library Code �� 150

Adding the ADF Source Code ��� 152

Getting the ADF Source Code �� 153

Adding the ADF Source Code to JDeveloper ��� 153

Adding the ADF Source Code to a Project ��� 153

■ Contents

xiii

Tips and Tricks��� 153

If the Model Doesn’t Run �� 154

If the Page Is Empty �� 155

Conclusion ��� 156

 ■Chapter 7: Your ADF Workflow ��� 157

Work Process �� 157

Design Work �� 157

Application Architecture ��� 158

Initial Development ��� 158

Constructing the Application �� 162

Source Control ��� 163

Initial Versioning of an Entire Application ��� 164

Working with a Central Repository ��� 168

Git File Life Cycle �� 169

Using Feature Branches ��� 170

Quality Assurance �� 172

Auditing Your Code ��� 172

Documenting �� 174

Build Process �� 174

Building One Project ��� 174

Building the Master Application �� 177

Building Foundation and Subsystems �� 178

Copying ADF Libraries ��� 178

Combined Build �� 179

Using Developer Cloud Service ��� 179

Creating Users �� 180

Creating Projects �� 181

■ Contents

xiv

Task Management �� 183

Working on Code �� 183

Code Review ��� 184

Other Developer Cloud Service Features �� 186

Conclusion ��� 186

Index �� 187

xv

About the Author

Sten Vesterli picked up Oracle development as his
first job after graduating from the Technical University
of Denmark and hasn’t looked back since. He has
worked with almost every development tool Oracle
has produced in the last several decades, including
ADF, APEX, JET, Application Developer Cloud Service,
JDeveloper, SQL Developer, Oracle Portal, Oracle
WebDB, Oracle BPEL, Collaboration Suite, Designer,
Forms, Reports, and even Oracle Power Objects.

Sten started sharing his knowledge with a conference
presentation in 1997 and has since given hundreds of
conference presentations at Oracle OpenWorld and at
ODTUG, IOUG, UKOUG, DOAG, DOUG, and other user
group conferences around the world. His presentations
are highly rated by the participants, and he has received
the ODTUG Best Speaker award twice.

Sten has also written numerous articles for Oracle Profit, Oracle Scene, and many
other publications. This is Sten’s third book on Oracle ADF; before this one, he wrote
Oracle ADF Enterprise Application Development – Made Simple and Developing Web
Applications with Oracle ADF Essentials. You can find Sten online at www.vesterli.com,
on LinkedIn, and on Twitter as @stenvesterli.

Oracle has recognized Sten’s skills as an expert communicator on Oracle technology
by awarding him the prestigious title, Oracle ACE Director, carried by only around
100 people in the world.

An independent consultant based in Denmark, Sten works with customers
worldwide, helping them get the most from their investment in Oracle software. In his
spare time, Sten enjoys triathlons and is working toward his private pilot license.

http://www.vesterli.com/

xvii

About the Technical
Reviewer

Luc Bors is Partner and Technical Director at eProseed NL
and member of the global eProseed CTO Office. He is an
Oracle ACE Director and Certified Specialist in Oracle ADF
and Oracle MAF and Oracle MCS. With over 20 years of
experience as a principal consultant, architect, and trainer,
Luc is recognized globally as one of the authorities in his
area of expertise.

In his work as consultant, Luc is able to influence
customers and to work at a high level in the organization
to technically guide projects that can have big impact.
Luc has proved his skills in many projects, both in The
Netherlands and worldwide (Canada, USA, Denmark,
Germany, Belgium, Kuwait).

Luc is the author of the book Oracle Mobile
Application Framework, published by Oracle Press in
2014. He also regularly writes articles for international

magazines, websites, and his personal blog, and he is a frequent presenter at international
conferences such as ODTUG KScope, Oracle OpenWorld, and UKOUG tech. In 2011, he
was awarded the best speaker award at ODTUG KScope in the Fusion Middleware Track.
Luc has participated in the Mobile Beta testing program on several occasions, is a member
of the Oracle Mobile Development Customer Advisory Board, and has presented about the
Oracle Mobile Application Framework at many conferences.

xix

Acknowledgments

I want to thank Oracle for providing us with Oracle ADF, which is the best tool for rapidly
and efficiently producing user-friendly full stack applications. I appreciate that Oracle
gives us this powerful technology for free in the form of Oracle ADF Essentials, and that
Oracle is continually evolving ADF. With new, even cooler visualizations and the ability
to publish ADF business logic as REST web services, ADF continues to serve as the
centerpiece of the application architecture at many Oracle customers.

Oracle is also sharing their experience building the Oracle Cloud Applications with
ADF through the Oracle Applications User Experience team. If you are building ADF
applications, you can find user experience design patterns and beautiful, user-friendly
sample applications with full source code at www.oracle.com/usableapps. I encourage
you to visit.

I would also like to thank Oracle ACE Michael Rosenblum for the discussion over
dinner overlooking the San Francisco Bay that led to this ADF Survival Guide, Jonathan
Gennick from Apress for believing in the idea, Jill Balzano from Apress for shepherding
the project to completion, and Oracle ACE Director Luc Bors for his many invaluable
review comments.

Finally, I thank my wonderful wife for her love and support, and for accepting yet
another batch of weekends marked “Book deadline” in our calendar.

http://www.oracle.com/usableapps

xxi

Introduction

This book introduces you to Oracle ADF, which is used by many Oracle customers.
ADF is a highly productive tool and is used to efficiently build user-friendly enterprise
applications. Some of these ADF applications are new, some are replacements for legacy
technologies like Oracle Forms, and some are extensions to Oracle’s suite of Software-as-
a-Service applications.

ADF developers are in high demand, and this book contains all the information you
need to become a competent ADF developer.

In Chapter 1, you learn about building ADF applications using the declarative tools
in JDeveloper. The power of ADF allows you to deliver a lot of bug-free functionality
without having to write any code.

Chapter 2 explains ADF architecture and how to use ADF features to construct
maintainable applications of all sizes.

In Chapter 3, you learn how to control the visual appearance of your application, and
how to achieve the exact layout you want.

Chapters 4 and 5 explain how to add business logic to your application, both in the
business component layer and the user interface layer.

In Chapter 6, you learn how to use ADF logging and debugging, and chapter 7
rounds off the book with a look at how to establish an efficient ADF development
workflow.

http://dx.doi.org/10.1007/978-1-4842-2820-3_1
http://dx.doi.org/10.1007/978-1-4842-2820-3_2
http://dx.doi.org/10.1007/978-1-4842-2820-3_3
http://dx.doi.org/10.1007/978-1-4842-2820-3_4
http://dx.doi.org/10.1007/978-1-4842-2820-3_5
http://dx.doi.org/10.1007/978-1-4842-2820-3_6
http://dx.doi.org/10.1007/978-1-4842-2820-3_7

1© Sten Vesterli 2017
S. Vesterli, Oracle ADF Survival Guide, DOI 10.1007/978-1-4842-2820-3_1

CHAPTER 1

Drag-and-Drop Building

The secret behind the very high productivity that Oracle Application Development
Framework (ADF) offers is the ability to build a lot of functionality without writing code.
When building ADF applications, you should aim to write as little code as possible, using
JDeveloper to drag and drop together the initial version of every page in your application.

This chapter explains how to use the ADF Business Component wizards and the
graphical task flow builder, and how to build pages with automatic data binding.

Anatomy of an ADF Application
Oracle started out as a database company, and this heritage shines through in most of
their development tools. Tools like Oracle Forms, Oracle Application Express (APEX), and
Oracle ADF all start from the assumption that you already have a well-designed relational
database with all the tables you need to store your data.

Above the database, an ADF application has two layers: the business services layer
and the user interface layer. Between these two layers you find the binding layer that
defines how the user interface layer is connected to the business services layer. Figure 1-1
shows the ADF high-level architecture.

Chapter 1 ■ Drag-anD-Drop BuilDing

2

Business Services Layer
The business services layer provides the main functionality of the application. This
includes all kinds of calculations, business rules, and the very important functionality of
storing data. Behind the business service layer might be other technologies—there will
typically be a relational database to store data, but your ADF application could also be
purely based on web services. In this book, we will discuss ADF applications where the
business services layer consists of ADF business components based on Oracle database
tables. This is by far the most common way of building ADF applications and the
approach recommended by Oracle.

User Interface Layer
The user interface layer contains the web pages your users will use to interact with your
application. Building the user interface layer involves

•	 Deciding which pages your application is going to have

•	 Defining the navigation flow between pages

•	 Designing the actual pages with fields, buttons, and other user
interface components

Figure 1-1. ADF high-level architecture

Chapter 1 ■ Drag-anD-Drop BuilDing

3

Binding Layer
The binding layer connects the user interface layer to the business services layer and is
the secret sauce of Oracle ADF. When you create your application using the drag-and-
drop functionality in JDeveloper, the binding layer is automatically created for you. It is
thus possible to build perfectly functioning ADF applications without ever visiting the
binding layer. But because a basic understanding of the binding layer is very useful in
real-life ADF application development, we’ll discuss it briefly at the end of this chapter.

Creating ADF Workspaces
An enterprise ADF application consists of many workspaces that each produce part of
the overall application. When you work with ADF, you create your workspaces using
File ➤ New ➤ Application and choosing the type ADF Fusion Web Application in
JDeveloper. When you create such a workspace, JDeveloper will automatically create two
projects inside the workspace:

•	 A model project for business components

•	 A view/controller project for the user interface

JDeveloper also automatically adds the right ADF libraries to each project and
defines a dependency between them, so the view/controller project has access to the
business components created in the model project.

JDeveloper calls a workspace an “application.” this is a poor choice of word, because all
but the very simplest aDF applications will involve more than one workspace.

Database Business Components
As mentioned in the introduction, Oracle ADF applications are normally built on top of
a relational database. Oracle JDeveloper offers several wizards that make it easy to build
all the types of ADF business components you will need in your business services layer.
There are five main types of business components:

•	 Entity Objects: These objects correspond directly to tables, so
there will be one entity object for every table your application
uses. The entity objects handle the technical details of converting
attribute value changes to INSERT, UPDATE, and DELETE
statements sent to the database.

•	 Associations: These objects define relationships between
entity objects and correspond to foreign key relationships in the
database. The JDeveloper wizard normally automatically detects
foreign key and creates matching associations, but you can also
create them manually.

Chapter 1 ■ Drag-anD-Drop BuilDing

4

•	 View Objects: These objects define the specific data you need for
a particular use case. A view object can use data from multiple
entity objects and thus from multiple tables. For example, an
Employees view object might show a department name from
the Departments entity object in addition to the employee
information from the Employees entity object.

•	 View Links: These objects represent master-detail relationships
between view objects and allow ADF to coordinate the detail
records with the master. For example, if you show a department
with a list of its employees, the view link connecting your
Departments view object with your Employees view object
ensures that the Employees view object only shows records for
that department.

•	 Application Modules: These objects collect instances of all the
view objects used in an application or a subsystem. Application
modules control the database transactions, allowing you to make
changes in many different view objects in the application module
and them commit or roll back all the changes in one transaction.

The different ADF business components can be visualized as shown in Figure 1-2.

Chapter 1 ■ Drag-anD-Drop BuilDing

5

Keeping Organized
Your ADF application is going to contain a lot of business components of all five types.
To make it easier for you to keep them separate so you can find the one you want,
JDeveloper offers a preference setting that you should set.

In the JDeveloper preferences dialog under the ADF Business Components node,
change the package prefix setting for each type. This setting means that every time a
JDeveloper wizard creates a business component for you, it will automatically place it in
an appropriately named subpackage under the root package of your business component
project.

I recommend the settings shown in Figure 1-3.

Figure 1-2. ADF business components

Chapter 1 ■ Drag-anD-Drop BuilDing

6

The Demo Wizard
When you start out with Oracle ADF, you should build your business components using
the Business Components from Tables wizard in JDeveloper. This wizard initializes the
project for business components, including the creation of a database connection from
JDeveloper to the database that contains your application tables.

Make sure you select your business services layer (model) project before you start
creating ADF Business components.

 ■ Tip Decide on a database connection name early in the project and have everybody use
that same name. When you combine your master application from multiple subsystems, it is
much easier if everybody uses the same datasource name.

Figure 1-3. Preference settings for ADF business component packages

Chapter 1 ■ Drag-anD-Drop BuilDing

7

It takes you through up to six steps and optionally shows a summary.

 1. Create entity objects. You can query the database connection
and select the tables you want to create entity objects for. The
wizard automatically creates associations for all foreign keys
in the database between the selected tables.

 2. Create entity-based view objects. A default view object is
created for each entity object you select. It will contain all
attributes from the entity object.

 3. Create query-based view objects. This step allows you to
create additional view objects based directly on SQL queries
and not entity objects. These will not be updatable.

 4. Create an application module and add an instance of all view
objects in all possible combinations.

 5. Create any REST web services. You’ll need to define an initial
version of the REST API to your business components and
then select the view object you want to expose as REST web
services.

 6. Define which attributes you want included in each REST web
service.

You can end the wizard at any time after the first step by clicking Finish.
Running the wizard and selecting the EMPLOYEES and DEPARTMENTS tables from the

normal Oracle HR demo schema creates the business components shown in Figure 1-4.

Chapter 1 ■ Drag-anD-Drop BuilDing

8

Testing Business Components
Because an ADF application consists of both a business services layer and a user interface
layer, it can be hard to debug problems by just running the application and interacting
with the user interface. You can’t tell if you should look for the problem in the business
services layer or the user interface layer.

To address this challenge, JDeveloper offers the Oracle ADF Model Tester. This
small application can be started from within JDeveloper by right-clicking an application
module and selecting Run. When you do that, the Oracle ADF Model Tester application
starts, loads the application module you clicked, and presents all the view object
instances inside the application module. You can click each view object to see the actual
data in the database with all business component logic applied. The ADF Model Tester
application looks as shown in Figure 1-5.

Figure 1-4. ADF business components for EMPLOYEES and DEPARTMENTS

Chapter 1 ■ Drag-anD-Drop BuilDing

9

You should always perform a simple test of your ADF business components with this
little application to verify that your selection, validation, and business logic work the way
you expect.

Entity Objects
Entity Objects correspond directly to database tables and handle object/relational
mapping and data validation logic. There should be exactly one entity object for every
database table, which allows you to implement business rules and validations in one
place and be sure that it will always be applied.

By default, the JDeveloper wizards that create entity objects will create one attribute
for every column in the corresponding table. There is no performance penalty involved
in having every column represented as an attribute, because ADF will automatically
perform optimizations to only query the attributes/columns that are relevant in any given
situation.

Building Entity Objects
Because entity objects correspond directly to tables, there are few decisions to make
when creating entity objects. You can use the Business Components from Tables wizard
to create your initial entity objects—just don’t select to create any view objects or
application module.

When you have created your entity objects, you should open each of them and define
the default label for each attribute that will be displayed to the user. You do this on the
Attributes tab under the UI Hints subtab, as shown in Figure 1-6.

Figure 1-5. ADF Model Tester

Chapter 1 ■ Drag-anD-Drop BuilDing

10

The Label property and other elements on the UI Hints subtab will become the
default values used in the user interface components showing that attribute. If you
don’t specify anything here, the attribute name (derived from the underlying database
column) becomes the default label. The values provided at the entity object level can be
overridden in each view object based on the entity object.

You might have a database trigger that creates primary key values for new records in
the database. To tell ADF this, you need to change the type of your primary key attribute
to the special DBSequence type. Open the entity object and then open the primary key
attribute on the Attributes tab. When you change the Type field on the Details tab, several
other settings change, including the Refresh on Insert setting. Together, these changes
mean that your ADF application accepts that you don’t enter a primary key value when
creating a new record, and that ADF will ask the database to return the new primary key
value when issuing an INSERT statement.

Building Associations
If you build all your entity objects in one pass through the Business Components from
Tables wizard, the wizard should automatically create associations for all foreign key
relationships in the database. If you don’t create all entity objects at the same time,
JDeveloper might not create the associations. In this case, you can create associations
manually from JDeveloper. This is also necessary if your database for some reason does
not contain foreign keys.

To get the maximum benefit from the JDeveloper wizards, you should make sure that
JDeveloper knows about the relations in your data model.

Figure 1-6. Setting UI Hints for an entity object attribute

Chapter 1 ■ Drag-anD-Drop BuilDing

11

View Objects
Where entity objects are oriented toward the database, view objects are oriented toward
the user. Each view object represents a specific set of data collected for a specific need.
Your user interface defines the view objects you need, including which attributes must be
included.

Building View Objects
Because each view object is built for a specific purpose, you can’t simply run a wizard
and build a whole stack of them like you can with entity objects. Instead, you build view
objects individually using the view object wizard in JDeveloper.

When running the wizard, you first select an entity object that will serve as the base
entity object for the view object. By default, that entity object will be marked as updatable.

If you need additional data from other entity objects, you add those after adding the
first. By default, these entity objects will be marked as Reference objects in JDeveloper. In
Figure 1-7, the Employees entity object is selected first and is updatable. The Departments
entity object is added later to get access to the department name.

Figure 1-7. Building a view object

You can see from the figure that JDeveloper has figured out the connection between
the two entity objects and refers to the corresponding association. If there were no
association between the Employees and Departments entity objects, JDeveloper would
have no way of connecting them.

Chapter 1 ■ Drag-anD-Drop BuilDing

12

The ordering of records is also defined as part of the view object definition
(step 5, Query).

View object attributes also has a UI Hints subtab on the Attributes tab, just like entity
objects do. This allows you to specify a default label, tool tip, and other user interface
elements. If you don’t specify anything here, the UI hints from the entity objects are used.
If no UI hints were set at the entity object either, the attribute name (derived from the
underlying database column) becomes the label.

Defining Lists of Values
In the places in your application where you want to limit the value of some attribute to
a certain set, you normally define a code column with a foreign key to a table of allowed
values. In the user interface, this is typically implemented with a drop-down list. This
kind of relation is modeled in the view object in Oracle ADF, that is, in the business
services layer. When you later use the view object on a page in your application, you can
select how to represent this list of allowed values (various list components, radio groups,
or other options).

There are two things to do to define a list of values like this:

 1. Create the view object that contains the list of allowed values

 2. Associate the attribute with the value list view object

To create this association, you open the view object, go to the Attributes subtab, and
select the attribute that you want to associate the list with. On the List of Values tab below
the attributes, you click the green plus to add a list of values. In the Create List of Values
dialog, you click the green plus sign next to List Data Source, select the View Definition
radio button, and then select the view object containing your list values and descriptions.
Figure 1-8 shows all of these dialog boxes.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Drag-anD-Drop BuilDing

13

Don’t overlook the UI Hints tab of the Create List of Values dialog. This is where you
define which value is displayed to the user.

If you have a small number of values that you do not expect to change, you can create
a static view object by setting the Data Source to Static List in the first step of the Create
View Object wizard.

Building View Links
When your user interface contains a master-detail relation, like orders and order lines,
or departments with their employees, you need a view link.

These are created manually with a JDeveloper wizard once you have created both
the master and the detail view objects. Normally, a view link will be underpinned by an
association between the main entity object behind the master and the main entity object

Figure 1-8. Defining a list of values

Chapter 1 ■ Drag-anD-Drop BuilDing

14

behind the detail. In the view link wizard, you identify the master and detail view objects
and the attribute or attributes to use to establish the connection. If there is an association
available, you should choose the two ends of that association, as shown in Figure 1-9.

Note that you only need a view link if you want to display a master-detail relationship
in your user interface. If you just want to enrich one data set with data from a different
entity object, you create one view object on two entity objects without having to create a
view link.

Creating View Criteria
A view object always contains the same attributes and the same sort order (unless you
programmatically change it), but it doesn’t have to always return the same records.
To limit which records are returned by a view object, you can add view criteria and
bind variables. If you are familiar with SQL, you can consider a view criterion as a named,
declarative WHERE clause.

You add view criteria on the View Criteria tab in a view object. In the Create View
Criteria dialog, you give your criteria a name and can add multiple criteria connected
with AND or OR. Each criterion compares an individual attribute with either a literal
value you hard-wire into the view criteria, or a bind variable you can create in this dialog.
Figure 1-10 shows a view criterion.

Figure 1-9. Building a view link

Chapter 1 ■ Drag-anD-Drop BuilDing

15

When you have created a view criterion, you can use it when you add a view object
instance to an application module. You can also programmatically apply it to a view
object—we’ll get back to that in Chapter 5.

Building Application Modules
The last ADF business component is the application module. These objects collect a
number of view object instances that will be used in your application or subsystem. The
application module controls the database transaction, allowing the user to make changes
to many different view objects through many different screens and then committing
everything to the database as one transaction.

Each view object instance is based on a view object, but one view object can be used
in multiple view object instances in an application module. For example, Figure 1-11
shows an application module that contains three different instances of the EmployeeView
view object.

Figure 1-10. Defining a view criterion

http://dx.doi.org/10.1007/978-1-4842-2820-3_5

Chapter 1 ■ Drag-anD-Drop BuilDing

16

The instance AllEmployees is at the root level of the application module and will
show all employees.

The instance EmployeesInDept is subordinate to AllDepartments and will only
show the employees in that department. To create one of these subordinate view object
instances, you add the view object via a view link. In the figure, the EmployeesInDept
instance is created by selecting AllDepartments to the right and selecting EmployeesView
via DeptEmptLink to the left.

The instance HighSalaryEmployees is also a root-level instance on EmployeesView, but in
this case, a view criterion has been applied to it. You can apply a view criterion by selecting the
view object instance and then clicking the Edit button at the top right. This brings up the Edit
View Instance dialog where you can set bind variables and apply view criteria.

Graphical Navigation Flow Design
When you have built the business services you need for your application, you need to
create the user interface layer. You build this layer in three steps:

 1. Partition your application into separate navigation flows.

 2. Design each navigation flow.

 3. Build the pages inside each navigation flow.

This section describes how to partition your application and design the navigation
flows; building the actual pages is covered later in the chapter.

Partitioning Your Applications
All enterprise ADF applications will contain many separate navigation flows that each
define how the user navigates between pages. Because Oracle developed ADF for their
own very large applications (like Oracle Fusion Applications, a full ERP suite), modularity
is central to ADF development.

Figure 1-11. View object instances in an application module

Chapter 1 ■ Drag-anD-Drop BuilDing

17

The first step in developing the user interface of an ADF application is therefore
to decide on which navigation flows you need. Your requirements normally serve as a
good starting point, with each use case or user story a candidate to become a separate
navigation flow.

Bounded and Unbounded Task Flows
The navigation flows you build in ADF are called task flows or sometimes page flows.
ADF task flows are modular, and you can include one task flow in another. This allows
you to build and maintain your entire application as a number of separate, reusable task
flows that are combined into an application. We’ll return to the architecture of the entire
application in the next chapter.

Task flows contain actual pages or page fragments displayed to the user and control
flows that define how the user is allowed to navigate between pages or fragments. It can
also contain flow logic (branching) and can call business logic.

There are two types of task flows in ADF:

•	 Unbounded task flows

•	 Bounded task flows

Unbounded Task Flows
An unbounded task flow consists of a number of pages, and the user can start the task
flow from any of these pages. There is thus not a strict boundary around the task flow.

Because every ADF view/controller project always has an unbounded task flow
called adfc-config, you normally don’t need to create these yourself.

An unbounded task flow is normally only used for first layer of navigation in the
application. Many ADF applications have only one page in their unbounded task flow and
then use various bounded task flows to expose the functionality of the application. How
to swap different bounded contexts in and out will be discussed in Chapter 4.

Bounded Task Flows
A bounded task flow normally consists of a number of page fragments. It has a single
well-defined entry point, one or more pages, and one or more exit points. Most of your
application functionality will normally be implemented in the form of bounded task flows
with page fragments.

You build your bounded task flows with page fragments in order to be able to reuse
them. A page fragment should contain only the user interface elements necessary to
perform the task it is designed for. It should not contain any common information like a
header bar, logo, or menu. In this way, the task flow can be used and reused all over your
application or even in different applications.

Because a page fragment is not runnable in itself, you need to embed it in a page in
order to run it.

http://dx.doi.org/10.1007/978-1-4842-2820-3_4

Chapter 1 ■ Drag-anD-Drop BuilDing

18

Creating Task Flows
The most common ADF architecture consists of one unbounded task flow and a number
of bounded task flows using page fragments. Since you automatically get an unbounded
task flow with every ADF Faces project, you will normally only need to create bounded
task flows using page fragments. Because your task flows are part of the user interface
layer of your application, make sure to select the view project in your workspace before
you start creating task flows.

You find task flows in the New Gallery under Web Tier ➤ JSF/Facelets. In the Create
Task Flow dialog, make sure you check both the Create as Bounded Task Flow and Create
with Page Fragments check boxes, as shown in Figure 1-12. In a real-life enterprise
application, you should use a template. We’ll discuss templates in Chapter 2.

Figure 1-12. Creating a bounded task flow with fragments

When you have created a task flow, you are presented with a blank diagram with an
instruction text in the middle.

Adding View Components
From here, you drag in View components from the Components palette (normally to the
right). You need one view component for each page or page fragment you want in your
application.

http://dx.doi.org/10.1007/978-1-4842-2820-3_2

Chapter 1 ■ Drag-anD-Drop BuilDing

19

Note that the first view component you create automatically acquires a green “halo”
behind it, indicating that it is the entry point of the bounded task flow. If you want
another activity to be the entry point, you can right-click the icon for the activity you want
invoked first and choose Mark Activity ➤ Default Activity.

Note that the view activities you add here are initially only placeholders. The actual
page or page fragment is not created until you double-click a view activity. If you look
carefully at the view activity icon, you can see that the bottom of the outline of the initial
icons is a dashed line. Once you have created the page or page fragment, the icon changes
to one with a solid outline all the way around.

Adding a Return Activity
Every bounded task flow should have at least one task flow return activity (the gray angle
arrow). That indicates the exit point, that is, the point where control returns to any task
flow that called this one. If you don’t have a return activity, you won’t be able to call the
bounded task flow from another task flow because there is no way to return. Note that the
return activity has an outcome property that you can set. If you have multiple task flow
return activities, you can indicate to a caller what happened inside the flow—for example,
you might have a return with success and another with error.

Adding Control Flow
When you have your view activities and the return activity, you add control flow cases
(arrows) to define the navigation allowed between them. You can (and should) give
each control flow case a short name. When you build your page and add a command
component like a button, the various flows away from a page fragment will be offered as
options. Figure 1-13 shows what a task flow might look like with a few view activities, a
return activity, and some control flows.

Chapter 1 ■ Drag-anD-Drop BuilDing

20

If you want, you can also add Router activities. These allow the flow to process to
different control flow cases based on the evaluation of an expression written in expression
language (EL). We’ll get back to that in Chapter 4, where we will also discuss how to drop
in code elements from your business components.

Drag-and-Drop Pages
When you have created placeholders for your pages in the task flow design, it is time to
create the corresponding page fragments. To do so, you double-click a view activity in a
bounded task flow with fragments to open the Create ADF Page Fragment dialog.

Page Layout
In the Create ADF Page Fragment dialog, you have three options:

•	 Create Blank Page

•	 Reference ADF Template

•	 Copy Quick Start Layout

Figure 1-13. A task flow

http://dx.doi.org/10.1007/978-1-4842-2820-3_4

Chapter 1 ■ Drag-anD-Drop BuilDing

21

While learning ADF, use the Copy Quick Start Layout option. This allows you to select
an example from a visual directory, as shown in Figure 1-14. When you make a selection,
JDeveloper will add the corresponding layout components to your page fragment.

In a real-life enterprise ADF application, you want to base all your pages and page
fragments on page templates. We’ll return to page templates in the next chapter.

Note that your page fragment should not contain decorative elements like a logo or
a page header bar. If you need these elements in your application, they should be added
to the master page that serves as the frame around your page fragment task flows. Page
fragments often just have a one-column stretched layout in order to make use of all the
available screen area.

Figure 1-14. ADF Quick Start Layouts

Chapter 1 ■ Drag-anD-Drop BuilDing

22

Viewing Your Page
When you have created your page, it opens in the JDeveloper main window. There are
several ways you can view your application:

•	 Design view

•	 Source view

•	 Structure window

In addition, JDeveloper shows a Properties window with details of the currently
selected item.

 ■ Tip You can reorder the windows in JDeveloper to your liking. to return to the default
window layout, choose Window ➤ Reset Windows to Factory Settings.

Design View
The initial view of your page is Design view. In this view, JDeveloper attempts to show
your page as it will look at runtime. The toolbar at the top of the window, shown in
Figure 1-15, allows you to change the view.

Figure 1-15. Design view

The Design setting shows technical details about your page that can be useful when
building the page: for example, the borders of layout components and technical details
about the fields and their values. The True setting shows your page as it will look at
runtime, with dummy data of the right data type (text, number, date). The Focus button
shows only one layout container, which can be useful when you have a complicated
layout with many nested containers. The different screen icons allow you to test your
layout in various sizes and orientations (desktop, tablet horizontal, tablet vertical,
smartphone horizontal, smartphone vertical). You can customize exactly how many
pixels each size should represent. Finally, you can view your page or page fragment with
dummy data in the various browsers you configure.

Chapter 1 ■ Drag-anD-Drop BuilDing

23

Source View
To see the actual source behind your page, you can change to the Source view by clicking
the Source tab at the bottom of the window. This view shows all components and settings
and allows you to freely make any change.

All components of an ADF page are part of a hierarchy, and you can collapse and
expand nodes with the + and – icons in the left margin. The toolbar at the top of the
window allows you to enable Block Coloring, where each node gets its own color to make
the structure clearer. You can also ask JDeveloper to reformat your code if you have made
manual changes.

By default, JDeveloper will show the Mini-Map in the right margin, giving you a
visual overview of your code. You can close it from the context menu in the map, and
display it again from the context menu in the source code (Source ➤ Show Mini-Map).

The far-right margin shows a green square at the top if your code is valid. If
there are errors, the block at the top turns red and, and you get red bars in the margin
corresponding to the location of the errors. Similarly, orange color indicates warnings.

If you have errors or warnings, a quick fix icon will often appear in the left margin,
offering you JDeveloper’s best guess at how to fix the code.

If you want to see line numbers, you can right-click in the left margin and choose
Toggle Line Numbers from the context menu.

To change back to the design view, click the Design tab at the bottom of the window.

Structure Window
The Structure window, shown in Figure 1-16, shows another view of the hierarchy of
components on your page.

Chapter 1 ■ Drag-anD-Drop BuilDing

24

By default, this window is placed in the bottom left corner of JDeveloper. The
selections you make in the Source view and the selection in the Structure window are kept
in sync by JDeveloper, so you can click an element in the Structure window to quickly
jump to that place in the page source code. The Design and Source views, the Structure
window, and the Properties window are just different representations of your application,
so if you make a change in the Source view, for example, it is immediately reflected in the
Structure window.

Adding Data-Bound Components
In a simple ADF Fusion workspace with a model and a view/controller project, you will
automatically find the Data Control created from your application module in the Data
Controls pane in the Applications window, as shown in Figure 1-17.

Figure 1-16. The Structure window

Chapter 1 ■ Drag-anD-Drop BuilDing

25

JDeveloper automatically creates one data control for every application module.
Inside the data control, you can see all the view object instances in the corresponding
application modules. From the Data Controls panel, you can, for example, drag a view
object instance (the square red/orange icon, e.g., AllDepartments) or an individual
attribute (the rectangular XYZ icon, e.g., DepartmentName) and drop it onto the page
fragment.

When you drop an item from the data controls pane onto a page or page fragment,
JDeveloper will automatically prompt you to select what type of user interface component
you want to add. The list depends on the type of item, showing only those that are
relevant to that item.

Figure 1-17. Data Controls pane

Chapter 1 ■ Drag-anD-Drop BuilDing

26

Adding a View Object Instance
When you drop a view object instance, you get a long list of possible user interface objects
to create, but the most commonly used are ADF Form and ADF Table (ADF Table is found
on a submenu under Table/List View).

If you select an ADF Form, you get a page that shows one record at a time. The
attributes will be arranged vertically with a separate field for each attribute. You can
check the Row Navigation check box, as shown in Figure 1-18, to ask JDeveloper to also
add buttons to navigate to first, previous, next, and last record.

If you do not provide a label for each attribute, ADF will use the UI hint from the view
object. If no UI hint was set in the view object, ADF will then fall back to any UI hint sent
on the entity object. If no label is specified there either, the label becomes the attribute
name derived from the database column.

Technically, JDeveloper creates an <af:PanelFormLayout> component containing
individual <af:InputText> components connected to the attributes in the view object
instance you drop. If you checked the Row Navigation check box, you also get buttons
connected to the standard operations First, Previous, Next, and Last that every view
object automatically offers.

If you select an ADF Table, you get a page that shows many records in a table with
each record as one row in the table. You can select check boxes to enable sorting
(by clicking the column header) and enable filtering (adding a filter criteria box at the
top of each column). You can also specify each attribute label if you don’t want to use the
default. Technically, JDeveloper creates an <af:Table> component bound to the entire
view object instance.

Figure 1-18. Creating an ADF Form

Chapter 1 ■ Drag-anD-Drop BuilDing

27

Adding an Individual Attribute
You can also drop an individual attribute onto a page or page fragment. In that case, your
choices of user interface component are different—the most commonly used component
is an ADF Input Text w/ Label that displays as a labeled input field as you’d expect. You
can explicitly specify a label or accept the default coming from the view object UI hints,
the entity object UI hints, or the database column name.

Adding an Operation
If you expand the Operations tab of a view object instance in the Data Controls pane, you
will see a number of standard operations that ADF automatically provides for every view
object. When dropping these onto a page or page fragment, you will be presented with a
list of user interface components that make sense for an operation. The most commonly
used are ADF Button and ADF Link.

In Chapter 5, you will learn how to add your own logic to view objects and
application modules. The methods you add and decide to publish will also appear in the
Data Controls pane and can easily be added to your application in the same way.

Adding Commit and Rollback
Just like the view objects, the application module also has an Operations tab at the very
bottom in the Data Control panel (under all the view object instances). The two standard
operations for an application module are Commit and Rollback. In order to perform a
commit or rollback to the database, you simply need to drop one of these operations onto
your page or page fragment. ADF will take care of everything for you, so you can build
fully functional database applications without writing any code.

Implementing Navigation
You define the possible navigation between pages when you add control flow cases to
your task flow. To actually implement the navigation in your user interface, you drop
an action item (e.g., a button) onto your page. With the action item selected, open the
Properties window, find the Action property, and choose from the list of options. You will
see that this drop-down list contains all the control flow cases you have defined away
from the current page.

When the user clicks the action item you have connected to the control flow case,
your ADF application changes to that page.

 ■ Tip aDF handles temporary storage of values as the user navigates between pages.
When the user eventually chooses a commit or rollback action, any changes will be
committed to the database.

http://dx.doi.org/10.1007/978-1-4842-2820-3_5

Chapter 1 ■ Drag-anD-Drop BuilDing

28

Examining Bindings
When you run an application you have built with these drag-and-drop features, data
from your business components will automatically show up in the fields on your web
pages. Changes made on the page are automatically propagated back to the business
components, and if you commit, all the way to the database. The mechanism that
connects business components to user interface elements is called bindings.

JDeveloper automatically creates them for you, and you can access them by clicking
the Bindings tab at the bottom of your page. This produces a visual representation of the
bindings that looks as shown in Figure 1-19.

The Bindings column to the left shows the different bindings. The most commonly
used are

•	 Attribute bindings (with the XY icon) for a single attribute.

•	 Tree bindings (with a folder hierarchy icon) for a whole view
object instance.

•	 Action binding (with the gearwheel icon) for actions.

When you click a binding, an arrow appears pointing to an Executable in the middle
column. This is most often an iterator that represents a pointer to a data collection in the
data control shown in the right column.

There is a binding for each page, stored in a page definition file. To see the actual
source code of the binding, you need to click the Page Definition File link at the top of the
bindings window, or find the binding in the Applications window.

In many ADF applications, you won’t need to change the bindings that JDeveloper
creates for you. However, in advanced ADF applications, you might need to create a
binding manually. You can click the green plus signs in the Bindings window to create
both bindings and executables.

Figure 1-19. Visual representation of bindings

Chapter 1 ■ Drag-anD-Drop BuilDing

29

 ■ Note if you delete an element from a page or page fragment on the Design tab,
JDeveloper tries to help you by automatically removing the corresponding binding. if you
delete an element from the Source tab, JDeveloper assumes you are an advanced aDF
developer and leaves the binding intact, so you can decide whether to keep it or manually
delete it.

Minimum Viable Product
An enterprise ADF application normally consists of a number of bounded task flows
using page fragments and a master page with a menu. When the user selects another
menu item, the corresponding task flow is shown in a dynamic region on the master
page. Because this way of building applications requires a bit of code, we’ll return to it in
Chapter 4.

However, you can build a fully functional application without any code. This allows
you to present a running prototype to your users quickly and gather initial feedback.

A Simple Master Page
A basic master page can be built on the One Column Header (Stretched) Quick Start
layout, as shown in Figure 1-20.

Figure 1-20. One Column Header (Stretched)

http://dx.doi.org/10.1007/978-1-4842-2820-3_4

Chapter 1 ■ Drag-anD-Drop BuilDing

30

Figure 1-21. A master page showing a region containing a bounded task flow

Inside that page, drop an Output Text component in the header area at the top
and a Panel Tabbed component in the main area of the window. You find these in the
Components window, by default in the right side of the JDeveloper window.

 ■ Tip You can use the search field at the top of the Components window to search for
components by name.

In the Create Panel Tabbed dialog, create tabs for all the parts of your application you
want to test.

Select your header text and use the Properties window to change the text, font style,
and size.

Then drag your page flows onto the tabs of your application. When prompted for
a user interface component, choose Region. We’ll return to the other option (Dynamic
Region) in Chapter 4. You will see the elements of your master page normally, and a
grayed-out image of the first page of your task flow, as shown in Figure 1-21.

You can now right-click the master page and run your application.

the first time you run an application after installing JDeveloper, you will be prompted for a
password for the built-in Weblogic server, and it will take a while for the server to perform
first-time initialization and startup.

http://dx.doi.org/10.1007/978-1-4842-2820-3_4

Chapter 1 ■ Drag-anD-Drop BuilDing

31

You should see your task flows on the different tabs and be able to navigate
between tabs.

Conclusion
You have now seen how to use the power of ADF and JDeveloper to build an entire, fully
functional ADF application without writing a single line of code.

In the next chapter, we’ll talk about how to build larger applications that make use
of ADF’s enterprise application development features, and in subsequent chapters you’ll
learn how to add Java code implementing business logic.

33© Sten Vesterli 2017
S. Vesterli, Oracle ADF Survival Guide, DOI 10.1007/978-1-4842-2820-3_2

CHAPTER 2

ADF Enterprise Architecture

In the previous chapter, you saw how easy it is to build small, but fully functional ADF
applications. This chapter will discuss how to build larger applications in an enterprise
setting.

ADF Libraries
The secret behind ADF enterprise functionality is ADF libraries. An ADF library is
like a normal Java Archive (JAR) file, but it contains extra metadata about its contents.
This metadata allows JDeveloper to display the content and makes it easy to reuse
components inside ADF libraries in JDeveloper.

Creating ADF Libraries
An ADF library is created from a project inside a workspace. When there are
dependencies between projects in a workspace, the library will automatically include all
objects from any projects it is dependent on. In a typical workspace of type ADF Fusion
Web Application, JDeveloper automatically adds a dependency from the view/controller
project to the model project. This means that when you create an ADF library from the
view/controller project, you automatically get the content of the model project included
in your library.

To create an ADF library from a project, you need a deployment profile. You create
this by right-clicking the project and choosing Deploy ➤ New Deployment Profile. Choose
an ADF Library JAR file type and give your profile a meaningful name. By convention, the
profile name is of the format adflibXxx (e.g., adflibHrDemoCommon). The profile name
becomes the default name of the ADF Library file.

 ■ Tip Because you might be handling ADF Library files outside JDeveloper (e.g., in your
version control system or on application servers), the application name should be part of the
library file name so you can tell the files apart.

www.allitebooks.com

http://www.allitebooks.org

ChApter 2 ■ ADF enterprise ArChiteCture

34

In the Edit ADF Library JAR Deployment Profile Properties dialog shown in
Figure 2-1, there is one setting you always need to change: Connections.

The default option Connection Details means that your library will include the
database connection details. You don’t want your libraries to include the connection
information to your local development database. Therefore, you need to select
Connection Name Only. This means that your library will just include the name of
your connection, not the technical details. It will then be up to your application server
administrator to define a datasource with this name, pointing to the right database.

Managing ADF Libraries
Because ADF libraries are central to your development process, it is important that you
manage them well. Each developer is free to release new ADF libraries at any time, but
you need a review process before the libraries are shared to the whole team.

By default, ADF libraries are created in a deploy subdirectory within the project. You
can leave them there and then tell your build/deployment manager when a new version
is ready for wider distribution.

The build/deployment manager will then ensure that your ADF library file is
tested and placed in the central location where everybody gets their ADF libraries. This
approved version should be placed under version control.

Your process might be automated or manual, but you need an intermediate step that
takes the ADF library built by some team, verifies it, and releases it for other teams to use.

Using ADF Libraries
To use an ADF library, you define a connection to the location in the file system where the
approved libraries are stored, and add them to the project that needs them.

The connection is defined in the Resources window, by default to the right of the
JDeveloper window. If you don’t see it, you can open it from the Window menu. In this
window, click the New icon at the top of the window and choose IDE Connections ➤ File
System. Give your connection a name and select the path to the common ADF Library.
The Resources window will now show all available libraries in that directory.

Figure 2-1. Edit ADF Library JAR Deployment Profile Properties dialog

ChApter 2 ■ ADF enterprise ArChiteCture

35

To use an ADF library in a project, select the project in the Applications window.
Then right-click the library in the Resources window and choose Add to Project.

 ■ Tip if you want to see which ADF Libraries are included in a project, you can right-click
the project and choose Refresh ADF Library Dependencies… this causes JDeveloper to
reread all ADF libraries for the project and print them to the Messages window.

ADF Architecture Models
With the power of ADF libraries, you can create an ADF architecture that fits your need.
There are many possibilities, but three good architectures are as follows:

•	 Simple

•	 Module

•	 Enterprise

Simple ADF Architecture
In a simple ADF architecture, you keep everything in one workspace. You will have a
foundation project containing common code, a model project with your ADF business
components, and a view/controller project with your task flows and master page.

This architecture works up to an application of no more than 20 task flows,
implemented by a team of no more than three or four developers. If the application
gets bigger than this, it becomes hard to find the component you need to work on, and
JDeveloper gets slower as it must handle the interdependencies between more objects.
If the team gets too big, members tend to get in each other’s way, and there can be
contention for central application files like DataBindings.cpx.

 ■ Tip to simplify your view of a large application workspace, check out the JDeveloper
feature Working Sets, found under the Working Set icon (a funnel) at the top of the
Application window. this feature allows you to limit what you see in JDeveloper.

Modular ADF Architecture
When building a single large ADF application, you should use a modular architecture.
This involves several workspaces and projects, each worked on by a small team of one to
four people.

ChApter 2 ■ ADF enterprise ArChiteCture

36

There will be a foundation layer, a small number of subsystems, and a master
application, as shown in Figure 2-2.

Foundation Layer
The foundation layer should be kept in one workspace with four projects:

•	 Common model

•	 Common UI

•	 Common utility code

•	 Business component base classes

When you create your foundation workspace, choose ADF Fusion Web Application.
This wizard allows you to create the common model and common UI projects. Then
add an extra project for utility and business component base classes with File ➤ New
➤ Project ➤ ADF Model Project. The reason you choose ADF model project is that this
project template in JDeveloper already contains the technologies you need.

The common model project should contain all business components that can be
shared across the entire application. Because entity objects map directly to database
tables, these can be shared and go into the common model project. Similarly, view
objects used for lists of values can also be shared and go into the common model.

Figure 2-2. Modular ADF architecture

ChApter 2 ■ ADF enterprise ArChiteCture

37

The common UI project contains all shared elements that belong to the user
interface layer. Elements in this project might include templates, skins, and declarative
components.

The common utility code project contains any common utility classes that you will
be using throughout your application.

 ■ Tip Find the Fusion Order Demo application from Oracle and download it. this demo
application contains several useful utility classes. though not officially supported Oracle
software, it can serve as a good starting point for your own utilities.

The business component base classes project contains your own ADF business
component base classes that extend the Oracle-supplied classes. The section “Creating
Your Own Base Classes” later in this chapter explains why you need these classes and
how to build them.

Subsystems
The task flows that implement the functional requirements of the applications go into
a small number of subsystems. Each subsystem should have its own workspace with a
model and a view/controller project. A typical project will have three to eight subsystems,
each assigned to a team of one or two developers.

The model project should contain the view objects that are specific to the use cases
implemented by that subsystem.

The view/controller project should contain the bounded task flows that implement
the use cases of the subsystem, together with their page fragments.

Master Application
The master application contains the master page with the global menu. All functionality
is included in the master application through ADF libraries produced by the subsystems.
Security is defined in the master application.

Enterprise ADF Architecture
If your organization has made a strategic choice of ADF as its development platform, you
are likely to be building many ADF applications. In this case, it makes sense to establish
an enterprise ADF architecture.

This involves an enterprise foundation layer common to all applications and an
application foundation layer for each application. There will be a small number of
subsystems and one or more master applications that utilize functionality from some of
the subsystems. In an enterprise ADF architecture, some subsystems might be shared and
used in several master applications. The architecture is illustrated in Figure 2-3.

ChApter 2 ■ ADF enterprise ArChiteCture

38

Enterprise Foundation
The enterprise foundation layer contains the code that is common across the entire
enterprise. This layer should be kept in one workspace with at least two projects:

•	 Enterprise business component base classes

•	 Enterprise common utility code

As for the modular architecture, the business component base classes project
contains extensions to Oracle’s ADF business component base classes. At the enterprise
level, you can add functionality that you want every ADF business component in the
organization to have.

Similarly, the enterprise common utility code project contains utility classes that are
expected to be used across all ADF applications in the organization.

Figure 2-3. Enterprise ADF architecture

ChApter 2 ■ ADF enterprise ArChiteCture

39

Application Foundation
The application foundation layer contains application-specific code:

•	 Application-specific extensions to the enterprise business
component base classes

•	 Application-specific common utility code

•	 Common model

The application-specific business component extensions extend the enterprise-level
business component base classes and add any additional functionality only needed by
this specific application. In the same way, the common utility code project contains
common classes only useful in this application.

The common model project contains business components shared across the
application as for the modular architecture (i.e., entity objects and a list of values view
objects).

Subsystems
Subsystems in an ADF enterprise architecture are like subsystems in a modular
architecture, and each consists of a model and a view/controller project.

Master Applications
Each master application is also like a master application in a modular architecture.
In an ADF enterprise architecture, the same subsystem can be used in multiple master
applications.

Deploying ADF Applications
Using these ADF architectures, your unit of granularity is the subsystem. If you make a
change, you have to rebuild the subsystem ADF library and then build and deploy the
master application EAR file.

If you want changes to your subsystems to take effect without needing to rebuild
the master application, you can look at deploying your ADF libraries as WebLogic shared
libraries, or investigate the ADF feature called Remote Regions.

Business Component Code
In the first chapter, you saw how you can build an Oracle ADF application without
writing a single line of code. Of course, you are not limited by the ADF default business
component functionality but can extend and customize it as you see fit.

ChApter 2 ■ ADF enterprise ArChiteCture

40

Implicit Business Components
If you don’t write any code yourself, you are implicitly using the ADF classes that Oracle
delivers as part of the ADF framework. For example, whenever your application uses
an entity object, ADF will automatically create an instance of the oracle.jbo.server.
EntityObject class. That class reads the definition of your entity object (table, columns,
and other settings) and provides a number of interfaces for the rest of the ADF Business
component stack to call.

Explicit Business Components
You can create explicit business components on the Java tab for a business component
by clicking the pencil icon in the top right corner of the tab. This brings up the Select Java
Options dialog. The dialog is different for the different types of business components:
Figure 2-4 shows what it looks like for an entity object.

If you do this, you will see that you get a Java class that extends the Oracle-supplied
business component base class. Part of the code is shown in Listing 2-1.

Figure 2-4. Generating Java for an Entity Object

ChApter 2 ■ ADF enterprise ArChiteCture

41

Listing 2-1. Part of the Java for an Entity Object

package com.vesterli.hrdemo.foundation.model.entity;
...
import oracle.jbo.server.EntityImpl;
...
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Sat Feb 04 15:17:10 CET 2017
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---
public class DepartmentsImpl extends EntityImpl {
...
 /**
 * This is the default constructor (do not remove).
 */
...
 /**
 * Gets the attribute value for DepartmentName, using the alias name

DepartmentName.
 * @return the value of DepartmentName
 */
 public String getDepartmentName() {
 return (String) getAttributeInternal(DEPARTMENTNAME);
 }
 /**
 * Sets <code>value</code> as the attribute value for DepartmentName.
 * @param value value to set the DepartmentName
 */
 public void setDepartmentName(String value) {
 setAttributeInternal(DEPARTMENTNAME, value);
 }
...
 /**
 * Add locking logic here.
 */
 public void lock() {
 super.lock();
 }

 /**
 * Custom DML update/insert/delete logic here.
 * @param operation the operation type
 * @param e the transaction event
 */
 protected void doDML(int operation, TransactionEvent e) {
 super.doDML(operation, e);
 }
}

ChApter 2 ■ ADF enterprise ArChiteCture

42

You can see that your class is called EntityImpl. The import statement shows that
this means oracle.jbo.server.EntityImpl. Depending on your choices in the Select
Java Options dialog, JDeveloper will create some placeholder methods in the class where
you can add your own code. For example, the Data Manipulation Methods check box has
caused JDeveloper to create the lock() and doDML() methods.

You can always right-click anywhere in the code and choose Source ➤ Override
Methods to ask JDeveloper to add a placeholder for any method in the Oracle-supplied
base class.

As created by JDeveloper, these methods just invoke the corresponding method
in the Oracle-supplied superclass. This means that generating Java for a business
component does not change the functionality of the application until you add some of
your own code.

Any changes you make to the specific business component (like DepartmentsImpl
in this example) will only apply to that one business component. But you can also make
changes that will apply to every business component in your application by creating your
own ADF business component base classes.

Your Own Base Classes
You should always create your own ADF business component base classes, extending
the Oracle-supplied classes. You don’t have to add any functionality, but it is important
that you create this extra layer of code so you have somewhere to place any common
functionality you might desire in the future across all components. Figure 2-5 shows how
your own base classes fit in between the Oracle-supplied classes and the specific business
components used in your application.

Figure 2-5. Extending Oracle’s business component base classes

ChApter 2 ■ ADF enterprise ArChiteCture

43

Creating Your Own Base Classes
Before you can create your own business component base classes in the BCBase project,
you need to have JDeveloper load the ADF business component functionality. You do this
by right-clicking the project and choosing Project Properties. Then choose ADF Business
Components and check the check box Initialize Project for Business Components.

When you have done this, create your own base classes as standard Java classes
(File ➤ New ➤ Java Class). There are 11 ADF business component base classes. You
are only likely to ever add functionality to a few of these, but since it doesn’t cost you
anything to add your own base classes, and you never know when one of them might be
useful in the future, you should create your own version of all of them. The Oracle classes,
all of which can be found in the oracle.jbo.server package, are as follows:

•	 EntityCache

•	 EntityImpl

•	 ProgrammaticEntityImpl

•	 EntityDefImpl

•	 ViewObjectImpl

•	 ViewRowImpl

•	 ProgrammaticViewObjectImpl

•	 ProgrammaticViewRowImpl

•	 ViewDefImpl

•	 ApplicationModuleImpl

•	 ApplicationModuleDefImpl

For each of these, create your own version extending the relevant Oracle class, as
shown in Figure 2-6.

ChApter 2 ■ ADF enterprise ArChiteCture

44

Your code will look similar to Listing 2-2.

Listing 2-2. Code for Your Own Business Component Base Class

package com.vesterli.hrdemo.foundation.bcbase;

public class EntityImpl extends oracle.jbo.server.EntityImpl {
}

Figure 2-6. Creating your own business component base class

ChApter 2 ■ ADF enterprise ArChiteCture

45

Note how simple this class is: it only has a name and the information that it extends
the Oracle-supplied base class. This is all you need at the beginning of a project—you can
add your own methods, overriding the method from the Oracle class as needed.

When done, create an ADF library from your BCBase project and place it in your
common ADF library directory for everybody to use.

Using Your Own Base Classes
Once you have created your own ADF business component base classes, you can set up
JDeveloper to always use them whenever creating new business components. You do this
under JDeveloper preferences under ADF Business Components ➤ Base Classes. For every
base class, replace oracle.jbo.server with the package that your base classes reside in,
as shown in Figure 2-7.

Making the change under JDeveloper preferences means that every business
component created from now on will be based on these classes. This also means that
your application will fail at runtime if the ADF library containing your ADF business
component base classes is not added to the project.

If you want to change the base classes for an individual project, there is a similar
setting under Project Properties.

Figure 2-7. Configuring JDeveloper to use your ADF base classes

ChApter 2 ■ ADF enterprise ArChiteCture

46

Using Templates
As is to be expected from an enterprise development framework, Oracle ADF also offers
various options to base your user interface elements on templates. If you create your
pages, page fragments, and task flows on templates, you have the option to easily add or
change things across your entire application or enterprise later. If you don’t use templates,
you must make any necessary global changes in each page, fragment, or task flow.

Since there is no cost involved in basing everything on templates except the need for
a little thought up front, you should always use them. Even if you don’t have any content
to go into the templates at the start of the project, create empty templates and build your
application on these.

All templates are created in a view/controller project in your foundation workspace.
If you are using an enterprise architecture, both your enterprise foundation and your
application foundation should have templates.

Page Template
Many ADF applications have just one master page, but you should still base it on a page
template to allow for later expansion and/or development of additional applications.

The page template contains common elements like a header bar or a common footer
you want on every page. It should be created in your CommonUI project using File ➤ New
➤ Web Tier ➤ JSF/Facelets ➤ ADF Page Template. You will normally copy a quick start
layout when creating a page template.

As part of the template creation, you will also define at least one facet and possibly
also attributes, as shown in Figure 2-8.

Figure 2-8. Defining template facets and attributes

ChApter 2 ■ ADF enterprise ArChiteCture

47

Using Facets
A facet is a place where the user of the template can add his or her own content.
A template normally has one facet, but there could be multiple if your layout requires
two separate content areas.

When you have created the template, it is shown in the JDeveloper main window.
Here, you add decorations like logos, headers, and so forth. All of the elements in the
template will become part of every page based on the template.

In the place where you want the actual page content, you drop a Facet Definition
(<af:facetRef>) from the Components palette. You will be prompted for a facet name,
with the options being the facets you defined when creating the template.

Using Attributes
Often, you want to be able to change text placed in the template area. For example, your
template might define a colored bar across the top of the page, and you want the page
name to be written inside this bar. On the page based on the template, you can’t add
anything inside the template area. However, you can assign values to template attributes.

This is used as follows:

•	 When defining the template, create an attribute (e.g., pageTitle).

•	 In the template, place a text element (e.g., <af:outputText>)
where you want the page name. Set the Value property of the text
element to match the attribute (e.g., #{attrs.pageTitle}). Apply
any style you want to the text element (font size, etc.).

•	 Create a page based on the template. In the Source view, select
the <af:pageTemplate> element, find the field for the template
attribute in the Properties window, and set it to the desired value.

Page Fragment Template
The body of your application will consist of page fragments in bounded task flows.
Because these fragments will live inside a master page in your application, they do not
normally contain any decoration like headers or footers.

Your page fragment template will therefore normally just consist of a one-column
stretched layout to ensure that your fragment will make use of all available space on the
page. Define one content facet and place the facet reference in the stretch layout.

 ■ Note it might seem superfluous to base page fragments on a template, but it doesn’t
cost anything to do, and it can save you from a lot of work in the rare cases where you do
find the need to add something common to every page fragment.

ChApter 2 ■ ADF enterprise ArChiteCture

48

Task Flow Template
You can also base your bounded task flows on a template. This allows you to add
functionality later or to set properties globally across your entire application.

One reason to do this could be to add common initializers and finalizers to each
task flow. These are pieces of code that ADF will automatically execute on entering and
leaving a task flow, and they are often used for application performance tracking.

Like page fragment templates, you might not have an immediate need for task flow
templates, but it doesn’t cost you anything to create them. By basing all your application
task flows on templates, you get the option to easily make some changes to every task flow.

Application Skin
The visual appearance of your application is determined in part by the ADF Skin. If you
do not create one, an ADF default skin will be used.

Your own ADF skins are always based on one of the standard skins that are part of
ADF, and everything that you do not explicitly change will have the default ADF look. This
means that you can create an empty skin at the outset of your project and place it in the
foundation workspace without affecting the look of the application.

If you base all your subsystems and the master application on this skin, you have
again established one point to make application-wide changes.

We’ll return to skins in Chapter 3.

Common Model
In an ADF application, you can also reuse some business components across subsystems.
These reusable components should be placed in a common model project in the
foundation workspace. Business components can typically only be reused within an
application, so the enterprise foundation layer in an ADF enterprise architecture is
unlikely to contain shared business components.

When you create the foundation workspace as an ADF Fusion Web Application,
JDeveloper will automatically establish a dependency between the model
(CommonModel) and the view/controller (CommonUI) project. You should remove
this dependency in your foundation project (Project Properties ➤ Dependencies). The
dependency means that when you create an ADF library from the view/controller project,
everything in the model project is automatically included. That’s fine for subsystems, but
in the foundation, you want to explicitly deploy each project to an ADF library.

Sharing Entity Objects
Remember that entity objects map database tables to an object representation that can
be used by view objects. This means that for every database table, you only need one
entity object. Therefore, it makes sense to create all of them in a common model project
that you deploy as an ADF library from a common model project in your foundation
workspace.

http://dx.doi.org/10.1007/978-1-4842-2820-3_3

ChApter 2 ■ ADF enterprise ArChiteCture

49

Sharing List of Value View Objects
View objects contain attributes collected for a specific purpose. This means that they
are generally built as part of a subsystem to implement the use cases or stories in that
subsystem. However, every time you implement a value list for an attribute, you also
need a view object. Many of these will be used in multiple subsystems, so it makes sense
to place them in the common model project in the foundation together with the entity
objects.

Your common model project also needs one application module. This allows you
to run and test your list of value view objects, and the application module can also be
used as a shared application module. Refer to the chapter Sharing Application Module
View Instances in the Oracle manual Developing Fusion Web Applications with Oracle
Application Development Framework for more on shared application modules.

Building Subsystems
The main body of an ADF application goes into the subsystems. Each subsystem should
be created in a separate workspace with a model and a view/controller project.

Your subsystem workspace will make use of all the ADF libraries from the foundation
layer: common UI, common model, business component base classes, and any common
utility code.

In the model project, you create the view objects and view links that are needed
to implement the stories or use cases of the subsystem. All of them should be based on
entity objects that come from the common model.

 ■ Tip if you don’t see any entity objects when creating view objects, you probably did not
add the dependency to the common model ADF library properly.

In the view/controller project, you create bounded task flows with page fragments,
matching your use cases, stories, or UI wireframes. These should be based on the page
flow template from the common UI ADF library.

After creating the task flows, you create the actual page fragments, based on your
page fragment template.

Because you can’t run task flows with page fragments directly, your subsystem
normally also contains a test page for each task flow. You can also use the ADF EMG
Task Flow Tester, which is a JDeveloper extension developed by members of the ADF
Enterprise Methodology Group (ADF EMG). You install this useful tool like other
JDeveloper extensions by selecting Help ➤ Check for Updates. Be sure to check the check
box Open Source and Partner Extensions in the first step of the Check for Updates wizard.
You should see this tool in step two of the wizard, as shown in Figure 2-9.

ChApter 2 ■ ADF enterprise ArChiteCture

50

Allow JDeveloper to restart and follow the instructions to start using the ADF EMG
Task Flow Tester.

Building the Master Application
The master application is where all the subsystems come together. It has its own
workspace and uses all the ADF libraries from the foundation level and all subsystems.
In the master application workspace, you only use the view/controller project—all
business components reside in a foundation layer or in a subsystem.

Master Application Content
The master application contains the master page (a page, not a fragment), based on the
page template.

Since the page template contains any application decoration (header bar, logo, etc.), the
page itself will only contain a menu, a dynamic region, and some code. The code handles
swapping the content of the dynamic region to show another bounded task flow. We’ll see an
example of the necessary code in Chapter 5, where we discuss application logic.

Security
Finally, you apply security in the master application. To apply security, you select
Application ➤ Secure ➤ Configure ADF Security and go through the Configure ADF
Security wizard.

Figure 2-9. Installing the ADF EMG Task Flow Tester

http://dx.doi.org/10.1007/978-1-4842-2820-3_5

ChApter 2 ■ ADF enterprise ArChiteCture

51

 ■ Note ADF security is available in ADF applications running on WebLogic and
Websphere application servers. if you are running the free ADF Essentials edition and
deploying on GlassFish, you do not have access to ADF security. You can secure web pages
through other means (e.g., Apache shiro) but must write your own authorization code if you
want to limit access at the task flow level.

Running the Configure ADF Security Wizard
In the first step, choose ADF Authentication and Authorization to ask ADF to handle both
authentication (identifying the user) and authorization (what the user is allowed to do).

In the second step, choose Form-Based Authentication and check the check box
Generate Default Pages. This creates basic login pages with all the necessary information
and fields. You can then change them to match your application. HTTP Basic and HTTP
Digest leave the login to the browser, presenting your user with whatever ugly dialog box
their browser uses for authentication.

In the third step, chose No Automatic Grants to indicate that you will explicitly assign
access rights.

In the fourth step, don’t check the Redirect Upon Successful Authentication check
box. You normally just want to show the master page to the user, not redirect to some
other page.

When you finish the wizard, your application is secure and will prompt you for a
username and password. It also won’t allow you access to anything until you define
access rights.

Defining Access Rights
Access rights are defined in the jazn-data.xml file created by the security wizard. You
can choose Application ➤ Secure ➤ Application Roles to view this file in a user-friendly
dialog instead of having to edit the file itself.

As an application developer, you create application roles for the different types of
users in your application. Many applications have only one level of security where every
authenticated user can use the full functionality of the application. In this case, you only
need one application role. Other applications have several types of users and would need
multiple application roles.

On the Application Roles tab of the jazn-data.xml file, you name these application
roles. On the Resource Grants tab, you select resources and grant them to specific roles.
If you have complicated security requirements, you might also use entitlement grants,
which are groups of resources.

Typical ADF security uses the following grants:

•	 Web Page grant for the application master page to every
application role.

•	 Task Flow grant for the different task flows to different application
roles if necessary.

ChApter 2 ■ ADF enterprise ArChiteCture

52

In an ADF application using the modular or enterprise architecture, the task flows
are developed in subsystems and brought into the master application through ADF
libraries. To grant access to these task flows, be sure to check the check box Show task
flows imported from ADF libraries.

If you want to secure data sets, you can use ADF Entity Object grants. If you want to
secure individual attributes, you use ADF Entity Object Attribute grants.

Running in the Built-in WebLogic
On the Test Users & Roles tab, you can define test users and assign roles to them. These
users are only used when running the application in the built-in WebLogic server in
JDeveloper.

You can assign the application roles defined in your application to individual
test users or to groups of users (called Enterprise Roles in JDeveloper). This allows
you simulate the authorization logic that will apply when deploying to a stand-alone
application server.

Deploying to Test and Production Servers
When you deploy your application to stand-alone test and production servers, part of the
deployment is to map application roles to the users or groups on the server.

In a typical enterprise setting, your WebLogic server will be integrated with some
identity provider (e.g., Microsoft Active Directory). This means that when you assign
application roles in Oracle Enterprise Manager Grid Control, you can see and assign to
your AD users and groups.

For example, your application might have application roles readonly, normal, and
superuser. In your identity management system, you might have groups of users called
Trainee, Customer Service, and Senior advisor. When deploying the application, you
could map readonly to Trainee, normal to Customer Service, and superuser to Senior
advisor.

Conclusion
You’ve seen how ADF Libraries allows you to split the development of even very large
enterprise applications into manageable pieces, and how to build all the foundation
elements you need before you start building in earnest.

In the next chapter, we will discuss how to achieve the layout and appearance you
want for your application.

53© Sten Vesterli 2017
S. Vesterli, Oracle ADF Survival Guide, DOI 10.1007/978-1-4842-2820-3_3

CHAPTER 3

Layout and Skins

As you saw in Chapter 1, JDeveloper can produce acceptable layouts and visual
appearance when building simple drag-and-drop ADF applications. This chapter will
explain how to get more control over the layout and appearance of your ADF application.

For this, ADF offers the following functionality:

•	 Layout components

•	 Individual component styling

•	 Application-wide skinning

You use layout components like Panel Grid Layout to arrange components on your
pages and page fragments. You can nest layout components within each other to achieve
exactly the layout you want, and control the spacing between elements with Spacer
components.

To change the look of an individual component, you change the InlineStyle property.
ADF components are controlled with standard Cascading Style Sheet (CSS) formatting,
and you can set an explicit style for one component or define a style class.

The look of every component in the entire application is controlled by the
application skin. A skin consists of a CSS file, optionally supplemented with resource
bundles to customize the default strings used in ADF applications, and possibly also your
own image files. Your application is always based on a default skin, so you only need to
change the things that you want to look different from the default.

Layout
Many years ago, the first technology for producing web pages with Java was JavaServer
Pages (JSP). In JSP, presentation and business logic in Java code were mixed together
with the HTML tags that defined the page shown to the user. This made for web pages
that were very hard to maintain. Over time, developers learned to separate the Java code
into tag libraries to try to clean up the mess, but using tag libraries right still required
discipline from the developer.

JavaServer Faces (JSF) solves this problem once and for all. A JSF page consists only
of components, and any presentation logic is placed in separate Java Bean classes. We’ll
return to presentation logic in Chapter 5. ADF is based on JSF, and ADF user interface
components are special JSF components delivered by Oracle.

http://dx.doi.org/10.1007/978-1-4842-2820-3_1
http://dx.doi.org/10.1007/978-1-4842-2820-3_5

Chapter 3 ■ Layout and SkinS

54

Some components like data input fields and drop-downs display data. Other
components perform actions like performing navigation and invoking business logic.
Finally, some components serve to arrange components on the page. These are the layout
components that we will be discussing in this chapter.

Layout Managers vs. Fixed Formatting
In some development tools (e.g., Oracle Forms), you place components in a fixed position
on the page. For example, you might place an input field at position x=150, y=220. This
means that the component will always be placed 150 pixels in from the left margin, and
220 pixels below the top margin. This approach gives you full control but is also inflexible.
If the user runs the application on a larger monitor, everything will stay as defined by the
developer and the extra space goes unused.

In an ADF application, the layout is dynamic and can depend on the size of the
browser window the application runs in. The layout is handled by layout manager
components that arrange the components placed inside them. Layout managers can
control other layout managers, leading to a whole hierarchy of layout managers. This
allows you to create the exact layout you want.

Some layout components simply control other elements—for example, a panel
grid layout control grid row components, and a tabbed panel controls detail items.
Other layout components have facets that can hold other components. For example, a
panel stretch layout has top, bottom, start, center, and end facets with specific locations.
Components you drop in the top facet of a panel stretch layout will always be placed
highest on the screen, and everything in the center facet will be below that.

 ■ Note Some components (like panel stretch layout) have start and end facets, not left
and right. this is because adF supports right-to-left languages like arabic, hebrew, or
persian. if you configure your application for one of these languages, the start facet moves
to the right, because that is where reading starts.

Stretching and Nonstretching
When the layout managers arrange components on the screen, they take into account
the stretching properties of each layout component. There are four types of ADF layout
components:

•	 Those who can stretch themselves and stretch their children

•	 Those who don’t stretch themselves, but do stretch their children

•	 Those who can stretch themselves, but don’t stretch their children

•	 Those who don’t stretch themselves and don’t stretch their
children

Chapter 3 ■ Layout and SkinS

55

An ADF application normally starts with a stretchable outer layout container that
stretches its children (like a Panel Grid Layout with a 100% height row and a 100% width
cell). This makes sure that your application will use all available browser space.

Some components can’t stretch (e.g., Input Text), so you should avoid placing these
as direct children of a layout container that will attempt to stretch its children. Instead,
you wrap your nonstretchable components in a layout component like Panel Group
Layout, which stretches itself but doesn’t stretch its children.

Quick Start Layouts
When learning about ADF layout, the best starting point is the Quick Start Layouts. These
demonstrate best practice and evolve together with ADF. For example, in earlier versions
of ADF, the outer layout container of the quick start layouts was a Panel Stretch Layout.
However, when ADF got the improved Panel Grid Layout component in version 11.1.2,
some of the quick start layouts changed to demonstrate the right way to use this new
component.

When you create a page or page fragments, choose Copy Quick Start Layout and
choose the example that most closely matches what you are trying to achieve. First, select
the number of columns (one, two, or three) from the Categories panel to the left. Then,
choose a type and finally a layout, as shown in Figure 3-1.

Figure 3-1. Using a quick start layout

Chapter 3 ■ Layout and SkinS

56

In the layout selection, you will see a few different icons:

•	 The four-way arrow indicates an area that will stretch as much
as possible. This is a good choice for the main work area of
your page.

•	 The padlock indicates an area that will not change in size.
JDeveloper only offers these fixed-size areas around the margins
(top, left, bottom, and in a few cases, to the right). These areas are
normally used for page headers, menus, and task lists that you
know will take up only limited space.

•	 The triangle indicates that JDeveloper will use an
<af:panelSplitter> component. This component is shown in
the application as a line with a little triangle, and the user can
click the triangle to collapse the area that the triangle points to.
This is often used to create a place for supplementary information
that the user might or might not need to see all the time.

•	 The scrollbar indicates that JDeveloper will use an
<af:panelGroupLayout> with layout scroll. In the application,
this layout will be shown with a scrollbar if there are more
components than will fit on the page. The one-column layouts
offer a vertical scrollbar while the two- and three-column layouts
offer a horizontal scrollbar. These layouts are used if you know
that your pages will contain more information than will fit on the
screen. You should try to avoid forcing the user to scroll.

Using Panel Grid Layout
The panel grid layout is the most versatile layout component and probably the one you
will use the most. It has the additional benefit that it matches the way HTML tables are
laid out, so it offers good performance compared to other ADF layout components.

Panel Grid Layout Example
If you look at the source code for the quick start examples, you will see that many of them
use an <af:panelGridLayout> component, containing <af:gridRow> and <af:gridCell>
components.

The panel grid layout component is just a container with a few properties, and the
layout is mainly controlled by the rows and cells inside it.

In the simplest possible layout, called One Column (Stretched), you get just one row
and one cell. The height property of the row is set to 100%, meaning the row will stretch
to take up all vertical space. Inside the row, the cell has the width property set to 100%,
meaning the cell will stretch to take up all horizontal space. The cell also has both the
halign and valign properties set to stretch. This means that the cell will attempt to stretch
components inside it. The net effect of these components and settings is a layout that will
take up all available space in the browser window and use it for its content.

Chapter 3 ■ Layout and SkinS

57

Creating Your Own Panel Grid Layout
You can also add a panel grid layout to a page from the Components window. This can
be useful if you decide you want more detailed control over the layout of a part of the
page. Experienced ADF developers also often just create their pages blank and add layout
components themselves.

When you drop a panel grid layout component on a page, the Create Panel Grid
Layout wizard appears as shown in Figure 3-2.

You decide on the number of rows and columns and the margins. The inner grid
margins define the spacing between rows and cells inside the grid, and the outer grid
margins define the spacing between the edge of the panel grid layout and the outermost
cells. For example, in the preceding figure, there are 30 pixels from the top of the grid
layout to the first row, then 10 pixels between rows, and then 40 pixels between the last
row and the bottom of the panel grid layout.

In the second step of the wizard, you can define the initial width and height of the
cells and define if some cells should span several rows or columns.

The choice you make on the Grid Width tab is used as the width property of all cells
in the column. By default, the JDeveloper wizard specifies width in percent, distributing
space evenly between the columns.

Figure 3-2. Create Panel Grid Layout wizard

Chapter 3 ■ Layout and SkinS

58

 ■ Tip Specify cell widths in percent and make sure the total adds up to 100%. if you mix
units (pixels and percent, for instance) or don’t allocate all space, the results are undefined.

You can also set the width to auto or dontCare. For a cell, auto width means it will
be sized according to the components in the cell. The dontCare setting for a cell means
that the other cells in the column can define the width. You probably don’t want to
set dontCare for a whole column, because this means ADF is free to give the column
whatever width it feels like.

On the Grid Height tab, the row height is always auto, meaning the height is defined
by the components in the row. After the wizard is complete, you can change the height to
a percentage (of the space not already allocated to other rows).

On the Spans tab shown in Figure 3-3, you can specify if any cells span multiple rows
or columns. You can see the name of the cells in the Preview to the right—they will be
named something like gc1,3.

Figure 3-3. Row and column spans in grid layout

Chapter 3 ■ Layout and SkinS

59

You define each span by defining the From grid cell (top, left) and the To grid cell
(bottom, right). JDeveloper will try to show only the options that make sense in the
second drop-down, but you can create impossible spans that don’t make sense. In this
case, the appearance in the application is, of course, undefined.

When you finish the wizard, JDeveloper creates an <af:panelGridLayout> tag and
places the necessary <af:gridRow> and <af:gridCell> tags inside it with the relevant
properties set. You can change the properties either in the Properties window or in the
source view. Spans are controlled with the columnSpan and rowSpan properties: the value
you set for these properties indicates how many cells you want to merge. This is similar to
the way HTML <td> tag uses colspan and rowspan properties.

Using Panel Form Layout
A very common layout is having several input elements arranged below each other in
one column. You can build this kind of layout with panel grid, but ADF has a specialized
layout manager for this: the Panel Form Layout (<af:panelFormLayout>).

You create this layout by dragging a Panel Form Layout component onto your page
from the Components window. When you drop a collection onto a page from the Data
Controls pane as you saw in Chapter 1, JDeveloper will also use a panel form layout.

Inside the panel form layout, you can place the data components you need. Often,
you will drag these in from the Data Controls panel as individual attributes in order to get
JDeveloper to create the necessary data binding automatically.

The panel form layout contains a footer facet that is often used for buttons to
navigate, save data, or execute business logic, typically placed inside a panel group layout.
For example, the code you get when you drop a view object instance as an ADF Form and
check the Row Navigation check box looks like Listing 3-1.

Listing 3-1. Example of Panel Form Layout

<af:panelFormLayout id="pfl1">
 <af:inputText ... />
 <af:inputText ... />
 <af:inputText ... />
 <f:facet name="footer">
 <af:panelGroupLayout layout="horizontal" id="pgl2">
 <af:button ... text="First" ... />
 <af:button ... text="Previous" ... />
 <af:button ... text="Next" ... />
 <af:button ... text="Last" ... />
 </af:panelGroupLayout>
 </f:facet>
</af:panelFormLayout>

The two most important properties controlling a panel form layout is the
MaxColumns and Rows properties.

http://dx.doi.org/10.1007/978-1-4842-2820-3_1

Chapter 3 ■ Layout and SkinS

60

•	 Rows control how many input elements ADF render before it
starts a new column. If you don’t enter a value, all your input
elements will be shown in one column. If for example, you set the
value 10, ADF will render the first 10 elements in the first column
and then start a second column for items 11 through 20.

•	 MaxColumns defines how many columns are allowed—the
default value is 3 for desktop applications and 2 when running on
a tablet or smartphone.

If you have more elements than Rows times MaxColumns, the MaxColumns
limitation has priority. That is, if you have 30 elements, Rows is 8 and MaxColumns is 3,
ADF will adhere to the MaxColumns limitation and override the Rows setting, rendering
your elements as 10 rows by 3 columns.

Using Panel Collection Layout
Another specialized layout component is the Panel Collection Layout
(<af:panelCollectionLayout>). This component is intended to be used together with an
<af:table> component for displaying multiple data records at the same time.

It contains three facets:

•	 The menus facet is used if you want to add extra items to the
built-in menu items provided by the panel collection layout.

•	 The toolbar facet is used if you need a toolbar with buttons.

•	 The statusbar facet is used if you want to display additional
information in a status bar below the table.

To use a panel collection, drop it onto your page from the Components window.
Then, drop a collection from the Data Controls pane onto the panel collection as an ADF
Table. If you have already dropped a collection as a table, you can right-click the table
component and choose Source ➤ Surround and then select a Panel Collection from the
Surround With dialog.

By default, the panel collection will show up as an extra line above the table. It
contains a View menu with functionality to select which columns to display, how to sort
them, and more. Figure 3-4 shows the default menu.

Chapter 3 ■ Layout and SkinS

61

You can add additional menus next to the built-in View menu by dropping a Menu
component (<af:menu>) onto the menus facet, either in the source view or in the Structure
panel at the bottom left of the JDeveloper window. Inside this menu, you add menu
items, normally <af:commandMenuItem>, that invoke methods in Java Bean classes you
write. We’ll return to Java Beans in Chapter 5.

If you want to add buttons directly to the panel collection top bar, you drop a Toolbar
(<af:toolbar>) onto the toolbar facet and then drop Button components (<af:button>)
onto the toolbar.

To create a status bar below the table, you drop a Toolbar onto the statusbar facet
and then place the desired component in the status bar. Often, this will be an Output Text
with the value property set to some calculated status. In Chapter 4, we’ll return to how to
compute values in Java code and display the result in an Output Text.

Using Tabs and Accordions
If you have more information than you can fit on one page, and the user needs to be able to
switch quickly back and forth among all the elements, you can consider grouping it using tabs
or accordions. Both are interactive container items that contain other layout components,
which again contain the actual data elements or action items the user will be interacting with.

Figure 3-4. Panel collection with ADF table

http://dx.doi.org/10.1007/978-1-4842-2820-3_5
http://dx.doi.org/10.1007/978-1-4842-2820-3_4

Chapter 3 ■ Layout and SkinS

62

Panel Tabbed
We already discussed the Panel Tabbed component at the end of Chapter 1. This component
will render each detail item within it as a separate tab when running the application. When
you drop a Panel Tabbed (<af:panelTabbed>) onto a page or page fragment, JDeveloper
shows the Create Panel Tabbed wizard. In this wizard, you can define all your tabs and select
where to place them (above, below, both, left, right, start, or end). The start and end locations
respect your regional settings and will show to the left for left-to-right languages like English
and show to the right for right-to-left languages like Arabic.

The wizard is of course just a shortcut to create multiple components at the same
time. If you later decide you want another tab placement, you can change the Position
attribute. If you find that you need an additional tab, you can add a Show Detail Item from
the Components window or write or copy an <af:showDetailItem> tag in source view.

If all your tabs do not fit on the screen, ADF will automatically display both scroll
arrows, allowing you to scroll right and left, and a List all tabs icon (a downward-pointing
triangle).

Panel Accordion
Another layout component that allows the user to choose between different views of your
application is the Panel Accordion. This is named after the musical instrument that can
also be expanded and contracted.

When you drop a Panel Accordion onto a page from the Components window, the
Create Panel Accordion appears. Similar to the wizard for creating a tabbed layout, this
window allows you to define the panes you want inside the accordion. At the top of the
dialog, you choose between One pane at a time and Multiple panes at the same time. If
you choose to display one at a time, the open accordion will automatically close when the
user selects a new one. You can of course only select Disclosed for one pane if you chose
to have only one open. If you choose to allow the user to have multiple panes open, the
Disclosed column changes to a check box where you can select multiple panes.

If you later want to add a new pane, simply drop a Show Detail Item inside the panel
accordion. To change between displaying one and many panes, you change the value
of the Disclose Many property. For each detail within the accordion, you can control
whether it is initially displayed by setting the Disclosed property.

 ■ Tip you can convert your layout between Panel Tabbed and Panel Accordion by
changing the just the panel component. the Show Detail Item components work the same
way in both types of panel.

http://dx.doi.org/10.1007/978-1-4842-2820-3_1

Chapter 3 ■ Layout and SkinS

63

Other Layout Components
Panel Grid, Panel Form, and Panel Collection are the most commonly used layout
components, and Panel Tabbed and Panel Accordion can help you if you have very
complex pages. In addition to these, ADF offers a long list of other layout components,
including

•	 Panel Stretch Layout with a center facet for content and optional
top, bottom, start, and end facets for additional information.

•	 Panel Splitter with two facets, one of which can be collapsed. This
allows the user the choice between using the entire screen area on
one facet or to split the screen between the two facets.

•	 Show Detail offers a collapsible area you can use for
supplementary information or optional input. Note that Show
Detail is different from Show Detail Item. Show Detail is used on
its own, but Show Detail Item is used in the context of a Panel
Tabbed, Panel Accordion, or other layout containers.

•	 Decks offer a transition between different views (like a slideshow),
and Panel Dashboard allows you to create a layout with boxes that
can be rearranged by the user.

Sometimes, you just want to adjust a little extra spacing to your layout, for example,
to align items better. You can use Spacer components for this. These invisible components
have a fixed width and height you can set in pixels.

 ■ Note the recommended approach for alignment is to use a correctly configured Panel
Grid Layout. your design should not depend on Spacers.

Responsive Design
Responsive Design means applications that are built to change in response to available
screen size. The idea is to build one application that looks good on both large desktop
workstations and small tablets or even smartphones. ADF 12c release 2 (12.2.x) has two
features that make this easier: Masonry Layout and Match Media Behavior.

Masonry Layout
The Masonry Layout manager dynamically arranges specially formatted detail items in
a grid. While the name “masonry” might imply a fixed wall, it is actually a very dynamic
layout, arranging the “bricks” when the page is first rendered, and rearranging them every
time the application browser window changes in size. The ADF documentation calls the
bricks tiles.

Chapter 3 ■ Layout and SkinS

64

This kind of layout makes sense in a dashboard-type application where you have
many small information elements to present. Small data visualization components like
donut charts work well in a masonry layout, either by themselves or as links to other
pages with more detailed information.

There are several different layout components you can use as bricks—the most
common are Panel Box and Panel Group Layout. The documentation doesn’t state which
ones work, but most components do not work as bricks in a masonry layout.

 ■ Tip When you create a masonry layout in the current version of Jdeveloper (12.2.1.2.0),
it is filled with two default Panel Box components. a default Panel Box can be collapsed,
but the masonry layout, unfortunately, doesn’t notice this, leading to a misaligned layout.
Change the Show Disclosure property to false so the user can’t mess up the masonry layout.

Just like Lego bricks, the bricks in a masonry layout must all have a standard size.
The masonry layout has a default smallest brick of 170 × 170 pixels, and all other bricks
are multiples of this size, taking into account the spacing between bricks.

Brick Size
The size of a component inside a masonry layout must be defined using the Style Class
property. Oracle supplies eight standard sizes for us:

•	 AFMasonryTileSize1x1

•	 AFMasonryTileSize1x2

•	 AFMasonryTileSize1x3

•	 AFMasonryTileSize2x1

•	 AFMasonryTileSize2x2

•	 AFMasonryTileSize2x3

•	 AFMasonryTileSize3x1

•	 AFMasonryTileSize3x2

If none of these fit your need, the masonry layout recognizes style class names above
these, all the way up to AFMasonryTileSize10x10. However, if you want to use these larger
sizes, you must define the corresponding CSS classes in your skin CSS file.

The default size of a 1 × 1 brick is 170 by 170 pixels. The default border is 8 pixels,
so the distance between two adjacent bricks is 16 pixels. In order for the masonry to line
up correctly, larger bricks must have a size that is a multiple of the base size plus the
distance between bricks. For example, the total width of two 1 × 1 bricks next to each
other is 2 × 170 pixel + 2 × 8 pixel border between them. Therefore, the 2 × 1 brick is
356 pixels wide.

Chapter 3 ■ Layout and SkinS

65

 ■ Note it is possible to override the aFMasonrytileSize classes in your own CSS file, creating
a masonry layout with different brick sizes. Because masonry layout is a brand-new feature in
adF 12.2 and still has some rough edges, it is not recommended to use a nonstandard brick size.

Brick Alignment at Runtime
At runtime, ADF renders a masonry layout by adding bricks in the order they are listed
inside the <af:masonryLayout> tag. They are added in reading order from left to right
(unless you have configured your ADF application for a right-to-left language). Bricks are
added one at a time until the next brick can no longer fit in the current row. The brick that
didn’t fit then becomes the first brick in a new row. As soon as the layout has more than
one row, ADF tries to fit the next brick into any open space in each row. Only if it does not
fit anywhere, is it added to the end of the bottom row.

For example, if a wide 3x1 brick has caused ADF to start a second row, it might still
be able to fit any subsequent 1x1 or 2x1 bricks into the first row. Similarly, ADF tries to fill
any holes left over by bricks of different height.

Masonry Best Practice
If you have many large bricks, as shown in Figure 3-5, ADF can’t really fit them together
into a nice-looking layout.

Figure 3-5. Too many large bricks in a masonry layout

Chapter 3 ■ Layout and SkinS

66

To make a masonry layout work well, you need a good supply of small (1 × 1) bricks
that ADF can fit into any spaces left over by the larger bricks, as shown in Figure 3-6.

On a large monitor, a masonry layout will end up on one line, as shown in Figure 3-7,
unless you limit it.

To avoid this, you can place the masonry layout inside another container with a
limited with. You can place it inside a Panel Group Layout where you set the InlineStyle
property to, for example, max-width:750px.

Screen-Dependent Formatting
The masonry layout is an automatic way of implementing responsive design—ADF fits
the defined bricks into the layout as well as it can.

However, ADF also offers another way of controlling the layout of pages depending
on screen size: through the <af:matchMediaBehavior> tag. When you place this tag inside
another component, it can control some attributes of its surrounding tag. For example,
you can control the Rows attribute of a Panel Form Layout, as shown in Listing 3-2.

Figure 3-7. Very wide masonry layout

Figure 3-6. Masonry layout with enough small bricks

Chapter 3 ■ Layout and SkinS

67

Listing 3-2. Using <af:matchMediaBehavior>

<af:panelFormLayout id="pfl1" rows="6">
 <af:matchMediaBehavior propertyName="rows"
 matchedPropertyValue="12" mediaQuery="screen and (max-width: 768px)"/>
...
</af:panelFormLayout>

In this example, the Rows property of the Panel Form Layout has the default value 6,
but if the screen size falls below 768 pixels, the value of Rows changes to 12.

The <af:matchMediaBehavior> attributes specify which attribute of the
containing tag is to be changed (propertyName), and what the value is to be
(matchedPropertyValue). The condition is placed in the mediaQuery property and follows
standard CSS3 media query syntax.

It is important that the property is explicitly defined in the containing tag—in this
case, that the Panel Form Layout has Rows defined. Otherwise, your application will fail
with a NullPointerException.

In the version of ADF current when this book was written (12.2.1.2.0), the
<af:matchMediaBehavior> tag has no documentation except a short example in the
documentation—it doesn’t even appear in the online tag documentation at http://docs.
oracle.com/middleware/12212/adf/tag-reference-faces/toc.htm. It doesn’t seem to be able
to do much more than changing this specific attribute. It would be very useful if you could
change the width of an element, but that doesn’t seem to work in the current version.
It would also be an excellent feature if you could change the Rendered property, which
controls whether a specific component is shown or not.

 ■ Note Check the documentation and the tag guide to see if the functionality of
<af:matchMediaBehavior> has improved since this book was written.

Styling
All the ADF components have an acceptable default visual appearance. However, most
organizations want to change the look in some way, and ADF supports that. Because an
ADF application is a web application running in a browser, normal Cascading Style Sheet
(CSS) styling works for ADF components. This section describes how to change the look
of individual components.

Almost every ADF component has an InlineStyle property where you can write CSS
styling. Some components also have a ContentStyle property and a few have an additional
LabelStyle property.

There is also a StyleClass property where you can enter a reference to a CSS style
class. Using this property requires that your application has a separate CSS file.

http://docs.oracle.com/middleware/12212/adf/tag-reference-faces/toc.htm
http://docs.oracle.com/middleware/12212/adf/tag-reference-faces/toc.htm

Chapter 3 ■ Layout and SkinS

68

Inline Styles
The InlineStyle field is connected to the many specific CSS style fields on the six tabs
below the field. You can either write CSS styling directly in the field or make selections
and enter text on the tabs. JDeveloper automatically keeps the InlineStyle field
synchronized with the many fields on the tabs, as shown in Figure 3-8.

Unfortunately, setting the InlineStyle doesn’t always give you the result you expect.
The reason is that some ADF components become quite complicated HTML constructs
when they are rendered in a browser. For example, Figure 3-9 shows what an Input Text
component looks like at runtime in the browser when viewed with the Developer Tools in
Google Chrome.

Figure 3-9. The HTML for an Input Text

Figure 3-8. Setting InlineStyle

Chapter 3 ■ Layout and SkinS

69

The one component becomes an HTML table row (<tr>) containing one cell (<td>)
for the label and one for the actual field. Setting an InlineStyle for an Input Text affects the
HTML table row, but not the label cell or the input field.

Content Style
To address the problem of applying a style to the content of an item and not the whole
HTML tag around it, ADF offers you the option of setting a ContentStyle. The CSS
formatting you put in this field affects the content of the component. For example, in an
Input Text component, it affects the field where the value is displayed and can be changed.

You must write proper CSS in the ContentStyle field—there is no typing help like
you get from the six tabs with icons below the InlineStyle field. If you’re not strong on
CSS commands, you can make your selections on the tabs and then move the finished
CSS expression from InlineStyle to ContentStyle. Figure 3-10 shows an example of using
ContentStyle.

Label Style
Some of the ADF input components have a label element that is part of the component.
Figure 3-9 shows that the entire input text element is a table row with two cells for label
and content. Where InlineStyle applies to everything, and ContentStyle applies to the
content, LabelStyle applies to the label text and background.

Similar to ContentStyle, you have to write valid CSS in the LabelStyle property and
don’t get any help from the styling tabs below the property.

Style Class
If you are adding the same styling to a lot of elements, it makes sense to store your CSS
in one place and reuse it. A skin contains a CSS file, but depending on the tool you use to
create your skin, you might or might not be able to add your own style classes to the skin
CSS file.

Figure 3-10. Setting ContentStyle

Chapter 3 ■ Layout and SkinS

70

Skin editor Own CSS classes possible in skin?

Built-in JDeveloper skin editor Yes, in source view

Theme Editor web application (from 12.2.1) No

As described in the following section on Skinning, the Theme Editor is the easiest
tool for changing your application skin. However, because it isolates the developer from
the CSS details, it does not offer the ability to define your own style classes.

Instead, you must create a CSS file in your Common UI project and add it to your
page and page fragment templates using an <af:resource> tag. The classes defined in
your CSS files can then be used in the StyleClass property.

 ■ Note the style class definition in the CSS file uses dot notation like .veryImportant.
the StyleClass property is set without the dot (veryImportant).

Conditional Styling
All of the style properties can also be made dynamic (i.e., the value is calculated by Java
code). We’ll see an example of this in the next chapter, where we discuss user interface
programming.

Skinning
The look of all ADF applications is controlled by their skin. Over the lifetime of ADF, ADF
applications have had many different appearances. The next-to-last was the Skyros skin,
and the latest is the Alta skin. Oracle recommends you use the Alta skin and follow the
Alta guidelines for all new application development. This is also what Oracle is doing
themselves across all products, including Application Express (APEX) and Oracle JET. So,
if the organization uses other Oracle development tools than ADF, the applications will
have something in common.

Oracle Alta covers many aspects of the user experience, and Oracle has created a
whole web site on using Alta. It explains the visual style and provides user experience
design patterns. These design patterns are based on Oracle’s user experience research and
explain the best way to design pages and implement specific features. You find all material
on Oracle Alta at www.oracle.com/webfolder/ux/middleware/alta/index.html.

Working with Skins
Creating CSS files is a specialty in web development, and ADF skins are extracomplicated
CSS files. Oracle has been trying many different things to make is reasonably easy for
regular developers to create ADF skins, and it doesn’t seem like they have found the final
solution yet.

http://www.oracle.com/webfolder/ux/middleware/alta/index.html

Chapter 3 ■ Layout and SkinS

71

At the time of writing, JDeveloper is in version 12.2.1.2.0, and you can create and edit
skins in two ways:

•	 Inside JDeveloper

•	 With the stand-alone Theme Editor web application

The stand-alone Theme Editor is easiest to use but does not allow you to edit every
aspect of the application. The Theme Editor user interface talks of Themes, but a theme is
the same as a skin.

In JDeveloper, you can make any change, but the JDeveloper skin editor is not as
user-friendly as the theme editor. Unfortunately, you will have to choose between the two
tools. Oracle documentation claims that it is possible to create a skin in JDeveloper based
on a theme created in the Theme Editor, but this does not seem to work in the version of
JDeveloper current at the time of writing (12.2.1.2.0).

 ■ Note the recommended approach is to create your skin in the theme editor. if the
capabilities of the theme editor prove insufficient, create a skin in the Jdeveloper skin
editor and copy and paste the CSS from your theme into the Jdeveloper skin editor on the
source tab.

Setting Up the Theme Editor
The Theme Editor is a web application (EAR file) that you get together with JDeveloper.
To set it up, you need to create an application workspace in JDeveloper and configure the
application to store the skins you work on:

 1. Choose File ➤ New ➤ Application ➤ Application from EAR
file

 2. Choose the Theme Editor EAR file \<jdeveloper_install_dir>\
jdeveloper\skineditor\skin-editor-webapp.ear and finish the
wizard

 3. In JDeveloper, open the web.xml file and add the following
context initialization parameters (the SKIN_REPOSITORY
parameter might already exist):

<context-param>
 <description>Set this context parameter to file so that themes get
 saved to a temporary directory. Specify a directory location for
 oracle.adf.view.rich.SKIN_REPOSITORY_FILE_PATH to persist changes
 between server restarts.</description>
 <param-name>oracle.adf.view.rich.SKIN_REPOSITORY</param-name>
 <param-value>file</param-value>
</context-param>

Chapter 3 ■ Layout and SkinS

72

<context-param>
 <description>Set this context parameter to a directory location where
 themes are saved. Use to persist changes between server restarts
 </description>
 <param-name>oracle.adf.view.rich.SKIN_REPOSITORY_FILE_PATH
 </param-name>
 <param-value>C:\\JDeveloper\\adfskins</param-value>
</context-param>

Then save and close the web.xml file.
The value of the SKIN_REPOSITORY_FILE_PATH is where the Theme Editor will

store your skin files. On Windows, you need to write backslashes twice, as shown in the
preceding. On Mac and Linux, the file path only contains forward slashes that only need
to be written once, like this: /Users/sten/jdeveloper/adfskins.

Creating a Skin
If you are using a modular architecture as described in Chapter 2, you need just one
application-specific skin.

If you are using an enterprise architecture, you should first create an enterprise
skin named after your organization. Then, you create an application-specific skin for
each application. This skin should be named after the application and extend your
enterprise-level skin. Both the Theme Editor and the JDeveloper skin editor allow you to
base a skin on a previously defined one.

When you have performed the setup described in the previous section, you can
right-click the index.html file under Web Content in the skin-editor project and choose
Run. This will start the Theme Editor web application in the built-in WebLogic service in
JDeveloper and open a browser for you to start working on your skin. The initial page of
the Theme Editor will look as shown in Figure 3-11.

Figure 3-11. Theme editor initial view

http://dx.doi.org/10.1007/978-1-4842-2820-3_2

Chapter 3 ■ Layout and SkinS

73

From this view, you can create a new skin by clicking the Create Theme button.

 ■ Note remember that this tool uses the word “theme” to refer to an adF skin.

You should normally base your new skins on the existing Alta skin. In an enterprise
ADF architecture, your application-specific skin should be based on your enterprise skin,
which should be based on the Alta skin.

Modifying a Skin
You can click your skin to bring up the skin editing page, as shown in Figure 3-12.

Using the different tabs on in this web application, you can make changes to the look
of your application. The effect of your changes is shown in the lower part of the browser
window, and you can toggle between multiple previews.

As mentioned previously, when you save your skin, its files will be stored in the
SKIN_REPOSITORY_FILE_PATH location. There will be a directory with your skin name
and version, and inside that, you find the actual CSS file for your skin. If you add (upload)
any of your own resources like logos or icons, these will become part of the skin and
stored in the resources subdirectory.

Figure 3-12. Theme editing window

Chapter 3 ■ Layout and SkinS

74

Exporting a Skin
When you are done making the necessary changes to your skin, you can export it as an
ADF library with the gearwheel icon on the Theme Editor overview page. Your skin gets a
system-generated name that you should change into something meaningful.

As with other ADF libraries, once your skin has been tested, it should be moved to
your common ADF library directory for your ADF subsystems and master applications to
make use of.

Using a Skin
To use a skin in a subsystem or master application, you first need to add the skin ADF
library file to your application. This is done in the same way as other ADF libraries are
added, as described in Chapter 2. Once you have placed it in the location you have
chosen for your ADF libraries, it should show up in your Resources window under your file
system connection. Right-click the library and add it to your project.

Then find the trinidad-config.xml file in the view/controller project. In the tree in the
Applications window, you find this file under Web Content ➤ WEB-INF.

In this file, you simply change the value inside the <skin-family> tag to the family
name of your skin. That’s all it takes to reskin your subsystem or application.

Testing
Because skins are static files, the built-in WebLogic server tends to cache them. This
means that your changes are not shown when you rerun the application.

In order to limit this caching (in a development or test environment), you can
set the context initialization parameter org.apache.myfaces.trinidad.CHECK_FILE_
MODIFICATION to true. The description of the parameter says:

“If this parameter is true, there will be an automatic check of the
modification date of your JSPs, and saved state will be discarded when
JSP’s change. It will also automatically check if your skinning CSS files
have changed without you having to restart the server. This makes
development easier but adds overhead. For this reason, this parameter
should be set to false when your application is deployed.”

Even though you set this parameter, you will still have to stop your application (from
the Processes window) before running it again.

 ■ Note Simply right-clicking and choosing Run will lead to a redeployment where your
skin changes do not take effect.

http://dx.doi.org/10.1007/978-1-4842-2820-3_2

Chapter 3 ■ Layout and SkinS

75

If you inspect a running ADF application with a tool like Firebug or Google
Chrome Developer Tools, you will see that all styles have short names like xrs. This is
an optimization that ADF automatically makes for performance reasons, but during
development, you can disable it to see the full style class names. To do so, change the org.
apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION parameter to true.

Working with the JDeveloper Skin Editor
If you need more skinning power than the Theme Editor offers, you can create an ADF
skin within JDeveloper. When you open the skin CSS files, JDeveloper recognizes that the
file is part of a skin and shows it in a specialized view.

For skins based on Oracle’s older Skyros skin, JDeveloper shows a skin view that
contains a Design tab, as shown in Figure 3-13.

Figure 3-13. The skin Design view in JDeveloper

Chapter 3 ■ Layout and SkinS

76

On this tab, JDeveloper attempts to show the effect of the changes you make. The
skin view also has a Selectors view (described in the following) and a Source view that
shows the raw CSS file.

Skins based on Oracle’s newer Alta skin are not displayed with a Design tab. Instead,
you work on the Selectors tab shown in Figure 3-14. On this tab, you can select elements of
ADF design in the tree to the left, make changes in the Properties window (not shown in
Figure 3-13), and then see the result to the right.

The JDeveloper skin editor is more powerful than the Theme Editor, but also much
more difficult to use. Skins based on the older Skyros skin can use the Design view, but for
skins based on the recommended Alta skin, you have to work in the not very developer
friendly Selectors view.

Conclusion
Now you can control how your application looks. You can arrange elements on the screen
and change the visual appearance of individual components through styling and the
entire application through the use of ADF skins. In the next chapter, we’ll see how to add
presentation logic to your application.

Figure 3-14. The skin Selectors view in JDeveloper

77© Sten Vesterli 2017
S. Vesterli, Oracle ADF Survival Guide, DOI 10.1007/978-1-4842-2820-3_4

CHAPTER 4

Business Logic

Much of the core functionality of your application will be implemented in the business
components. ADF offers a range of ways to add simple business logic without writing
code, but most of what makes your application unique will be implemented in Java
and/or Groovy.

 ■ Note Groovy is a scripting language that integrates with Java and is run in a Java
Virtual Machine just like Java code. Groovy has a simpler syntax than Java, making it a
good choice for code snippets used to define default values or programmatic validation, for
example.

One of the hard things about writing enterprise Java applications is creating an
object hierarchy that fits the specific business problem you are trying to solve. However,
this is not necessary in an Oracle ADF application. With the concept of entity objects,
view objects, and application modules, Oracle ADF establishes a best practice object
hierarchy, and you just need to fill in the blanks by overriding or adding methods to ADF
Java objects. This is one of the secrets that make ADF so productive even for developers
with little Java knowledge.

Logic in Entity Objects
Closest to the database we find the entity objects. The logic you add to entity objects
will apply throughout the entire application because all data access goes through these
objects. ADF automatically creates instances of business component classes whenever
they are needed. As described in Chapter 2, you should make use of the option to create
your own business component base classes extending the Oracle-supplied classes.

http://dx.doi.org/10.1007/978-1-4842-2820-3_2

Chapter 4 ■ Business LoGiC

78

The amount of Java code you need to write in these custom base classes will depend
on your application needs:

•	 If the declarative functionality of the ADF entity object is
sufficient, you don’t need to add logic to the base classes or
create specific Java classes for entity objects. In this case, ADF
simply creates and configures an instance of the relevant business
component base class.

•	 If you want to change how all entity objects work, you override
methods in your entity object base class (in the BCBase project in
your foundation workspace).

•	 If you want to change how a specific entity object works, you need
to create a Java class for that entity object, extending the base
class.

Some logic (e.g., calculating default values or programming validations) does not
require Java code at all, but can be handled with simpler Groovy scripts.

Default Values
To set a dummydefault value for an attribute, you select it on the Attributes tab in the
entity object and then fill in the Default Value section at the bottom right of the Details
tab. Figure 4-1 shows how to define a default value using a Groovy expression.

Chapter 4 ■ Business LoGiC

79

In a Groovy expression, you can refer to attributes in the current entity object using
just the attribute name, use the special adf object, and perform normal calculations and
logic. In the preceding example, we use the built-in adf.currentDate function to provide
a default value for HireDate. Refer to the section “Using Groovy Scripting Language with
Business Components” in the Oracle manual Developing Fusion Web Applications with
Oracle Application Development Framework for more on the built-in adf object and how
to use Groovy expressions.

 ■ Tip the Help button in the Expression Editor shows you some basic help information
and contains a link to the preceding section in the manual.

Figure 4-1. Defining an attribute default value using a Groovy expression

Chapter 4 ■ Business LoGiC

80

Groovy expressions are stored in separate .bcs (Business Components Script) files.
In some places in ADF business components, a Groovy script shows up as a hyperlink you
can click to open the .bcs file in a full editor window.

Validation
Much of the business logic in typical applications handles data validation. ADF offers
several ways to make it easy to define validations of attributes or entire entity objects.

Declarative Validation
To add validation to an entity object, open it and choose the Business Rules tab to the
left. You can then right-click either the Entity Validator node to specify validation for the
entire entity object or an individual attribute to add a validator for that attribute. The Add
Validation Rule dialog appears as shown in Figure 4-2.

Figure 4-2. Adding a validation rule for an entity attribute

Chapter 4 ■ Business LoGiC

81

There are many types of validation rules available:

•	 Collection (only entity level)

•	 Compare

•	 Key Exists

•	 Length

•	 List

•	 Method

•	 Range

•	 Regular Expression

•	 Script Expression

•	 UniqueKey (only entity level)

The Compare validation is very useful and can compare an attribute value to a literal,
another attribute in the same entity object, an attribute in another entity object, or even
the result of an SQL query.

Length and Range validations provide simple checks on an attribute value against
literal values.

Key Exists and List validations validate that an attribute exists as a key in some other
entity, or that the attribute is part of a specific list of allowed values. You should not
depend on these validations, but instead create a user interface that only allows the user
to select valid values. Similarly, you should autogenerate unique keys and not depend on
the entity-level UniqueKey validation.

For validating advanced formats, you can use Regular Expression validations. These
expressions are written in a very specific syntax and allow you to specify rules like “two
uppercase letters, followed by one to four digits.” JDeveloper offers you a few examples,
including e-mail validation, which looks like this: [a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+
\.[a-zA-Z]{2,4}. As this example makes obvious, it takes a little work to get used to
this syntax. While an Internet search is likely to provide you with a regular expression for
most validations, someone on your team should make the effort to understand regular
expression syntax.

At the entity level, you can also create a Collection validation. This is a rather
specialized validation that validates a collection of child records. For example, a
Collection validation on a Department entity object might restrict the sum of the salary

Chapter 4 ■ Business LoGiC

82

of all employees in the department. To be able to implement Collection validation, the
relationship between the parent and the children must be configured in a specific way:

 1. An association must exist between the entity object you
validate and the entity object containing the collection of
children.

 2. The association must be of Composition type. This type
is not the default, but is set on the Relationship tab in the
association, where the Composition Association check box
must be checked.

When creating a Collection validation, you are asked to select an operation, an
Accessor, an attribute, an operator, and a comparison value, as shown in Figure 4-3.

Figure 4-3. A Collection validation

If both preconditions are met, an accessor for the child entity object should show up
on the Accessor list. Once you have selected the accessor, you can select the attribute in
the child entity object to be validated against.

Chapter 4 ■ Business LoGiC

83

Script Expression Validation
You can also select validations of type Script Expression and write a Groovy expression.
This programming language has a Java-like syntax and can be used in many places in
ADF. The Oracle manual Developing Fusion Web Applications with Oracle Application
Development Framework describes how to use Groovy for validation, default values, and
much more. The expression must return either true (for validation success) or false (for
validation failure). Alternatively, you can call adf.error.raise() or adf.error.warn()
in case you might need to issue either an error or a warning.

Method Validation
If none of the declarative validations or script validation fit your needs, you can always
create a Method validation. To do this, select type Method and leave the Create and Select
Method check box checked, as shown in Figure 4-4.

Figure 4-4. Adding Method validation

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Business LoGiC

84

If you have not already created a Java class for your entity object, JDeveloper will ask
if you want the class created. In the class, a validation method will be created with the
right name and signature:

•	 An attribute validation must have the form public boolean
validateXXX(YYY value), where XXX is the name of the attribute
and YYY is a datatype matching the attribute.

•	 An entity validation must have the form public boolean
validateZZZ(), where ZZZ is the name of the entity object.

Naturally, you need to return true for validation success and false if the validation
failed.

Failure Handling
If you try to close the Add Validation dialog without defining a message on the Failure
Handling tab, you get a warning from JDeveloper. You should always go to the Failure
Handling tab shown in Figure 4-5 to define the message associated with a validation failure.

Figure 4-5. Defining a message for validation failure

Chapter 4 ■ Business LoGiC

85

On this tab, you decide whether a validation failure should be considered an error
or a warning. Errors prevent the application from continuing and are shown with a red
border around the offending attribute. Warnings are shown with an orange border, and
the user can decide to ignore the warning and continue committing the value to the
database (for example).

You provide a message and can even define variable tokens by using curly brackets
{ } in the text. For every set of curly brackets you use, a corresponding line appears in
the Token Message Expressions table, allowing you to enter an expression that will be
evaluated and inserted into the message at runtime.

Using Triggers
A new feature in ADF 12c is the ability to define entity-level triggers. These are similar to
entity-level validations and are also added on the Business Rules tab. A trigger is a Groovy
validation expression that is executed when the triggering condition occurs. The list of
triggering conditions includes

•	 Before and after insert

•	 Before and after update

•	 Before and after delete

•	 Before and after rollback

•	 Before commit

•	 After the transaction is posted to the database

The Groovy expression you write is by default untrusted. Normal Groovy will run just
fine, and you can call Java general-purpose APIs. However, you can’t use java.io.file
(for example) to read from a file. You also can’t call methods defined on your entity
objects from Groovy expressions.

If you want to explicitly mark your Groovy script as trustworthy, you have to find the
reference to the script in the XML view of your entity object (on the Source tab). There will
be a line trustMode="untrusted" that you can change to trustMode="trusted".

If you want to call a method you have written yourself, you can also annotate that
method with @AllowUntrustedScriptAccess to indicate that it is OK that untrusted
scripts call the method. Refer to the section “What You May Need to Know About
Untrusted Groovy Expressions” in the Oracle manual Developing Fusion Web Applications
with Oracle Application Development Framework for an example of how to configure trust
in a Java class.

Creating a Java Object
In order to add business logic to a specific entity object, you need a Java class for the
object. If you haven’t created one already by defining a method type validation, you can
create one by going to the Java tab of your entity object and clicking the edit (pencil) icon
to bring up the Select Java Options dialog, as shown in Figure 4-6.

Chapter 4 ■ Business LoGiC

86

You will normally only create the Entity Object Class. It is very rare that an application
needs to create its own Entity Collection Class (which handles the caching of data) or its
own Entity Definition Class (which defines the inner working of the entity object).

Your choices in the Include section for Entity Object Class decide which methods
JDeveloper will place into the entity object Java class. The Java class will extend the
relevant business component base class, and all the methods added will call the relevant
methods from the base class. This means that the entity object will work exactly as it did
before you generated Java—but now you have a Java class for one specific entity object
where you can add your own logic.

The Include section gives you the following options:

•	 Accessors: This creates setter and getter methods for all
attributes in the entity object. All of these methods call
setAttributeInternal() and getAttributeInternal() to
maintain default functionality.

•	 Data Manipulation Methods: This creates a doDML() method
and a lock() method. The doDML() method is invoked as part of
standard ADF processing whenever the ADF framework wishes to
send an INSERT, UPDATE, or DELETE statement to the database.
Later in this chapter, we will see an example of how this method
can be used. The lock() method is invoked when ADF wishes to
establish a database lock on a specific record.

Figure 4-6. Creating Java for an entity object

Chapter 4 ■ Business LoGiC

87

•	 Create Method: This creates a local create() method that takes
an AttributeList object as parameter. It is called when ADF
wants to create a new record, before the doDML() that happens
right before the actual INSERT statement is sent to the database.
Customizations often involve modifying the AttributeList to
add missing values or manipulate the values passed from the user
interface.

•	 Remove Method: This creates a local remove() method that
is called whenever ADF wants to remove a record, before
the doDML() call that happens before a DELETE is sent to the
database.

You can always add individual methods inside the generated class by right-clicking
in the source code and choosing Source ➤ Override Methods. This will bring up the
Override Methods dialog shown in Figure 4-7.

From this dialog, you can select one or more methods to override. This makes
JDeveloper add those methods to your entity object Java class so you can modify standard
behavior.

Figure 4-7. The Override Methods dialog

Chapter 4 ■ Business LoGiC

88

 ■ Caution if you use the edit (pencil) icon to bring up the select Java options dialog
again and deselect a check box, JDeveloper will delete the corresponding methods without
warning, including any code you have added. should this happen to you, use the History tab
at the bottom of the Java class to find the previous version.

Accessors
If you generate accessors for an attribute, you can modify the value being stored in the
setXXX() method and modify the return value in the getXXX() method.

For example, you could modify the setEmail() method to always convert the value
to lowercase, as shown in Listing 4-1.

Listing 4-1. Overriding an Accessor

package com.vesterli.hrdemo.foundation.model.entity;
...
import com.vesterli.hrdemo.foundation.bcbase.EntityImpl;
...
public class EmployeesImpl extends EntityImpl {
...
 /**
 * Sets <code>value</code> as the attribute value for Salary.
 * @param value value to set the Salary
 */
 public void setEmail (String value) {
 setAttributeInternal(EMAIL, value.toLowerCase());
 }
...
}

If you want to mask values, you can override the getXXX() method to return a
masked value for some or all users. For String attributes, you can simply override the
getter method to return ****** instead of the actual value. For numeric attributes like
Salary, you can only return numeric values, so the solution is to use a transient String
attribute.

You can add transient attributes to an entity object on the Attributes tab by clicking
the green plus icon and choosing New Attribute and adding a String attribute, for
example with the attribute name SalaryString. When done, mark the attribute Transient
on the Details tab so ADF will not try to include it in the SQL sent to the database.

When you create Accessors for an entity object, a setter and getter method is also
created for transient attributes. You can add logic to the getSalaryString() method to
return the true value only to users with the salary-admin-role and a series of asterisks if
the user does not have this role. This is shown in Listing 4-2.

Chapter 4 ■ Business LoGiC

89

Listing 4-2. Masking Values with a Transient Attribute

package com.vesterli.hrdemo.foundation.model.entity;
...
import com.vesterli.hrdemo.foundation.bcbase.EntityImpl;
import oracle.adf.share.ADFContext;
import oracle.adf.share.security.SecurityContext;
...
public class EmployeesImpl extends EntityImpl {
 /**
 * Gets the attribute value for Salary, using the alias name Salary.
 * @return the value of Salary
 */
 public BigDecimal getSalary() {
 throw new JboException("Internal error reading Salary");
 }

 /**
 * Sets <code>value</code> as the attribute value for Salary.
 * @param value value to set the Salary
 */
 public void setSalary(BigDecimal value) {
 throw new JboException("Internal error writing Salary");
 }

 /**
 * Gets the attribute value for SalaryString,
 * using the alias name SalaryString.
 * @return the value of SalaryString
 */
 public String getSalaryString() {
 ADFContext actx = ADFContext.getCurrent();
 SecurityContext sctx = actx.getSecurityContext();
 if (sctx.isUserInRole("salary-admin-role")) {
 return ((BigDecimal) getAttributeInternal(SALARY)).toString();
 } else {
 return "*******";
 }
 }

 /**
 * Sets <code>value</code> as the attribute value for SalaryString.
 * @param value value to set the SalaryString
 */
 public void setSalaryString(String value) {
 try {
 BigDecimal sal = new BigDecimal(value);
 ADFContext actx = ADFContext.getCurrent();

Chapter 4 ■ Business LoGiC

90

 SecurityContext sctx = actx.getSecurityContext();
 if (sctx.isUserInRole("salary-admin-role")) {
 setAttributeInternal(SALARY, sal);
 } else {
 throw new JboException("User not allowed to change salary");
 }
 } catch (NumberFormatException e) {
 throw new JboException("Salary must be numeric");
 }
 }
...
}

The listing also overrides the setter, taking the String value and converting into the
necessary BigDecimal. It then implements the same access control logic you saw in the
previous listing before calling the internal method to set the actual Salary attribute that
corresponds to the database column. With both a custom setter and getter implemented,
the user interface can work with this SalaryString attribute instead of the original
Salary.

 ■ Tip to prevent a ui developer from accidentally using the original Salary attribute, the
code in Listing 4-2 throws an exception if the application tries to manipulate that attribute
directly. You can also set the Display property of the Salary attribute to Hide (on the UI Hints
tab) to further reduce the risk of a developer using it.

Working with the Database
Handling Database Triggers
Your database might contain triggers that change values after insert or update. If this
is the case, you need to tell the entity object to expect these changes and make sure it
updates itself. This is done for each attribute on the Attributes tab. On the Details subtab,
you check the Refresh on Insert and/or Refresh on Update check boxes, as shown in
Figure 4-8.

Chapter 4 ■ Business LoGiC

91

This setting tells ADF to reread that attribute from the database after an insert or an
update, respectively.

In an Oracle database, triggers are often used to provide primary key values. In this
case, you need to set Refresh after Insert. When working with an Oracle database, ADF
makes use of the Oracle-specific RETURNING … INTO clause to get updated values back
from the database in one roundtrip. For other databases, it will take an extra roundtrip
from the application server to the database to refresh the attributes.

Calling Stored Procedures
When you override the doDML() method, JDeveloper automatically places a call to
super.doDML() in your entity object Java class. This ensures that normal ADF entity
object processing takes place, sending an INSERT, UPDATE, or DELETE SQL statement to
the database.

However, you remove this call if you don’t want this to happen. This can be useful for
example if you want all inserts into the table to be handled by a stored procedure in the
database. In this case, you want ADF to call that procedure instead of sending an INSERT
to the database. For example, if you have an EMP_API package containing a procedure
INSERT_REC taking four parameters, this could look as shown in Listing 4-3.

Listing 4-3. Calling a Stored Procedure in doDML()

/**
 * Custom DML update/insert/delete logic here.
 * @param operation the operation type
 * @param e the transaction event
 */

Figure 4-8. Refresh attribute on insert

Chapter 4 ■ Business LoGiC

92

protected void doDML(int operation, TransactionEvent e) {
 CallableStatement cstmt = null;
 if (operation == DML_INSERT) {
 String insStmt = "{call emp_api.insert_rec(?,?,?,?)}";
 cstmt = getDBTransaction().createCallableStatement(insStmt, 0);
 try {
 cstmt.setString(1, getFirstName());
 cstmt.setString(2, getLastName());
 cstmt.setString(3, getJobId());
 cstmt.setInteger(4, getDepartmentId());
 }
 catch (Exception ex) {
 // Handle SQL exceptions
 } finally {
 try {
 cstmt.close();
 } catch (SQLException ex) {
 // if error closing, ignore
 }
 }
 } else {
 super.doDML(operation, e);
 }
}

This code first checks if the statement is an INSERT. If so, it gets the current
transaction context and creates a CallableStatement with an SQL CALL statement
calling a stored procedure called INSERT_REC in the EMP_API package. As part of the
statement, question marks indicate parameters. After the statement object is created,
the attribute values from the entity object are connected to the parameters with some
setString() calls, and the statement is executed.

If the operation was not an INSERT, normal doDML() processing is handled in the
else branch with a call to super.doDML().

Replacing Standard Database Operations
Another place where overriding the doDML() method comes in handy is if you want to
implement logical deletes instead of actually deleting a record. This means that your
table and entity object needs an extra column indicated if the record has been deleted,
and every attempt to send a DELETE to the database must be intercepted and changed to
an UPDATE that sets the delete indicator attribute. If you create a new database column
DELETED_YN with a corresponding attribute in the entity object, the code could look as
shown in Listing 4-4.

Chapter 4 ■ Business LoGiC

93

Listing 4-4. Implementing Logical Delete

package com.vesterli.hrdemo.foundation.model.entity;
...
public class DepartmentsImpl extends EntityImpl {
 ...

 /**
 * Add entity remove logic in this method.
 */
 public void remove() {
 setDeletedYn("Y");
 super.remove();
 }
 ...

 /**
 * Custom DML update/insert/delete logic here.
 * @param operation the operation type
 * @param e the transaction event
 */
 protected void doDML(int operation, TransactionEvent e) {
 if (operation == DML_DELETE) {
 operation = DML_UPDATE;
 }
 super.doDML(operation, e);
 }

 /**
 * Gets the attribute value for DeletedYn, using the alias name DeletedYn.
 * @return the value of DeletedYn
 */
 public String getDeletedYn() {
 return (String) getAttributeInternal(DELETEDYN);
 }

 /**
 * Sets <code>value</code> as the attribute value for DeletedYn.
 * @param value value to set the DeletedYn
 */
 public void setDeletedYn(String value) {
 setAttributeInternal(DELETEDYN, value);
 }
 ...
}

The doDML() method simply replaces a DELETE with an UPDATE, and the remove()
method sets the attribute indicating that the record hard been deleted.

Chapter 4 ■ Business LoGiC

94

 ■ Tip Because records that are logically deleted remain in the database, your view
object will have to filter out the records that have been logically deleted. see the section
“permanent Filtering” later in the following section on view object logic for an example.

Logic in View Objects
While the bulk of entity object logic is found in one class, view object logic is found in two
classes:

•	 View object classes: These represent the query or whole data set
of the view object, and the built-in functionality of these objects
relates to all the records. Examples of functionality in view object
classes are changing sort order, view criteria, or executing the
query.

•	 View row classes: These represent individual rows in the record
set defined by the view object. The functionality in these objects is
related to one row. The typical function you will override in a view
row object is an accessor.

Creating Java Objects
Similar to the way you create Java objects for entity objects, you create Java objects for
view objects on the Java tab of the object by clicking the edit (pencil) icon. This brings the
Select Java Options dialog for view objects shown in Figure 4-9.

Chapter 4 ■ Business LoGiC

95

From this dialog, you can create both a View Object Class and a View Row Class and
select which methods you want JDeveloper to add to the generated class. You can always
edit the code later or override methods with Source ➤ Override Methods.

 ■ Caution if you bring up select Java options dialog again and deselect a check box,
JDeveloper will unceremoniously delete the corresponding methods, including any of
your code. if you lose code in this way, use the History tab in the Java class to revert to a
previous version.

Figure 4-9. Creating Java for a view object

Chapter 4 ■ Business LoGiC

96

View Object Class Logic
When you add business logic to entity objects, you typically override an existing method
to make ADF do extra things in addition to the standard functionality. This means that
entity object logic normally happens “behind the scenes” as the result of an operation
started elsewhere.

View object logic is different. If you add a method to a view object class and
create a client interface, that method is accessible from the user interface layer of your
application. It shows up in the Data Controls pane, and for simple methods, you can
just drag the operation onto a page fragment and drop it as an ADF button. In more
complicated cases, you create an operations binding for your method and then call it
from a managed bean in your user interface layer.

 ■ Note if your logic mainly manipulates data, it belongs in a view object class in the
business component layer. if your logic mainly manipulates the user interface, it belongs in a
managed bean in the user interface layer as described in Chapter 5.

View object logic works on the entire data set of the view object. If you want to filter
or sort data differently in response to choices made by the user, you invoke a method on
the view object class.

Enabling and Disabling View Criteria
A typical use case is enabling and disabling view criteria. View criteria are restrictions
on a view object that can be enabled and disabled, and the user interface often contains
buttons or check boxes for record filtering. Methods for showing and hiding records
based on a view criterion could look as shown in Listing 4-5.

Listing 4-5. Changing View Criteria in a View Object Class

package com.vesterli.hrdemo.deptemp.model.view;
...
import com.vesterli.hrdemo.foundation.bcbase.ViewObjectImpl;
...
public class DepartmentsViewImpl extends ViewObjectImpl
 implements DepartmentsView {
 ...
 public void showDeleted() {
 removeViewCriteria("DontShowDeleted");
 executeQuery();
 }

http://dx.doi.org/10.1007/978-1-4842-2820-3_5

Chapter 4 ■ Business LoGiC

97

 public void dontShowDeleted() {
 ViewCriteria vc = getViewCriteria("DontShowDeleted");
 applyViewCriteria(vc);
 executeQuery();
 }
 ...
}

Note that changing the data in the view object is not automatically reflected in the
user interface. If for instance you call one of these methods from a button, you need to set
the Partial Triggers property of the element showing the data (e.g., a Table component) to
point to the button that changes the view criteria. The concept of partial page rendering
and the partial triggers property will be explained in Chapter 5.

Permanent Filtering
In the entity object example earlier in this chapter, you saw how a logical delete could
be implemented in the entity object. This method leaves logically deleted records in
the database, and to prevent them from being shown to the user, you can have your
view object filter out these deleted objects. This could be done for example with a view
criterion, as shown in Figure 4-10.

Figure 4-10. A view criterion for filtering out logically deleted records

http://dx.doi.org/10.1007/978-1-4842-2820-3_5

Chapter 4 ■ Business LoGiC

98

You can add this view criterion permanently to the view object instance in the
application module to prevent the deleted records from ever being shown to the user. To
do this, open the Data Model tab of the application module and select the instance of the
Departments view object. Then, click Edit to bring up the Edit View Instance dialog where
you can apply the view criteria permanently in this view object instance.

View Row Class Logic
While the view object class works on the entire data set, the view row class methods work
on individual records. This means that modifying data and responding to data changes
belong in the view row class.

A typical change you make in the view row class is to override one or more accessor
methods (setter and/or getter for specific attributes). If you check the Include accessors
check box in the Select Java Options dialog, JDeveloper will automatically create accessor
methods for all attributes in the view object. It doesn’t cost you any performance to have
a lot of accessor methods in your view row class, but it does make the code larger and it
will take more time to find the method you want to change.

 ■ Note You can also override the accessors in an entity object. if you want the change to
apply throughout the entire application, you should override the accessor in the entity object.
if you only want to change the accessor in one place, you should make the change in the
relevant view row object.

Another example is more complex logic related to data changes. Consider for
example the default HR schema with employees and departments. If a user can freely
change the department of an employee, ADF default functionality works fine. You
simply allow the department number on the employees screen to be editable (typically
implemented with a drop-down list of all departments). But if you want to add additional
processing before initiating a department transfer, you could create a changeDept()
method on the employee view row class, taking the new department ID as a parameter.
In the user interface, you might create a separate input element to select the new
department—an element not connected to the database. You would then have a button to
call that method and connect the UI element for the new department to the method call.

The example changeDept() method in Listing 4-6 uses a View Accessor to work with
data outside the employee view row object and compares the location of the existing
department with the location of the new department. If the country is different, the
employee deserves a 10% raise for having to move to a different country.

Listing 4-6. Accessing Another View Object Through an Accessor in a View Row Class

package com.vesterli.hrdemo.deptemp.model.view;

import com.vesterli.hrdemo.deptemp.model.view.common.EmployeesVORow;
import com.vesterli.hrdemo.foundation.model.entity.DepartmentsImpl;

Chapter 4 ■ Business LoGiC

99

import com.vesterli.hrdemo.foundation.bcbase.ViewRowImpl;
...
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.RowSet;

public class EmployeesVORowImpl extends ViewRowImpl
 implements EmployeesVORow {
 ...

 public void changeDept(Integer newDeptId) {
 RowSet rs = getDepartmentsVO1();
 Row row = null;
 Object[] keyVals = new Object[1];
 keyVals[0] = getDepartmentId();
 Key oldDeptKey = new Key(keyVals);
 row = rs.getRow(oldDeptKey);
 String oldCountryId = (String)row.getAttribute("CountryId");
 keyVals[0] = newDeptId;
 Key newDeptKey = new Key(keyVals);
 row = rs.getRow(newDeptKey);
 String newCountryId = (String)row.getAttribute("CountryId");
 if (!oldCountryId.equals(newCountryId)) {
 setSalary(getSalary().multiply(new BigDecimal(1.1))
 .setScale(0, BigDecimal.ROUND_HALF_UP));
 }
 }
 ...

 /**
 * Sets <code>value</code> as attribute value for SALARY using the alias

name Salary.
 * @param value value to set the SALARY
 */
 public void setSalary(BigDecimal value) {
 setAttributeInternal(SALARY, value);
 }
 ...

 /**
 * Gets the view accessor <code>RowSet</code> DepartmentsVO1.
 */
 public RowSet getDepartmentsVO1() {
 return (RowSet) getAttributeInternal(DEPARTMENTSVO1);
 }
 ...
}

Chapter 4 ■ Business LoGiC

100

The changeDept() method first uses a view accessor to get a handle to all of the rows
in the DepartmentsVO1 view object instance. How to create accessors is described in the
following section. The code then first creates a Key object for the old department and
retrieves the country ID for that department, and then creates another Key to retrieve the
country of the new department. If they are different, the salary of the current view row is
set to 1.1 times the current salary, thus implementing a 10% raise when an employee is
moved to a department in another country.

View Accessors
For a view row class to be able to access other view row objects, there must be an accessor
to that object. This is created from the Accessors tab in the view object by clicking the
green plus icon. In the View Accessors dialog shown in Figure 4-11, you can choose which
accessors you want to create.

There must be an association between the underlying entity objects so that JDeveloper
and ADF can figure out how to get from a record in one view object to a record in another.

Logic in Application Modules
The last part of the business component layer is the application modules, and you can
also create your own Java objects implementing your application modules.

You create a Java class for an application module from the Java tab, as shown in
Figure 4-12.

Figure 4-11. Creating a view accessor

Chapter 4 ■ Business LoGiC

101

Application modules contain methods that you might want to override, and you
might also want to add your own business logic to application modules.

Overriding Application Module Functionality
Application modules contain a collection of view object instances and control
the database transaction. Therefore, many of the methods typically overridden in
application-specific application module classes relate to the database transaction or
connection.

When overriding application module methods, you normally want to change the
behavior of the entire application (i.e., every application module). For this reason,
application module methods are typically overridden in the base class that you base
all your application modules on. Refer to Chapter 2 for more on specifying your own
business component base classes.

The method most often overridden in application modules classes is
prepareSession(), which is invoked when an application module is first created.
Because application modules can be shared among multiple ADF sessions, it is also
executed whenever an application module is given to a new ADF session.

This can be used if you want to perform some database initialization every time the
application module connects to the database. You might want to set package variables,
alter the SQL session (e.g., to start SQL tracing), or establish a session context for use with
Oracle Virtual Private Database (VPD).

The application module also contains methods like beforeCommit(),
beforeRollback(), afterCommit(), and afterRollback() that you can override to
implement custom transaction handling.

Figure 4-12. Creating a Java class for an application module

http://dx.doi.org/10.1007/978-1-4842-2820-3_2

Chapter 4 ■ Business LoGiC

102

Adding Custom Application Module Logic
Custom methods you add to your application modules can also be used in the user
interface just like methods on view objects. This is very often used to implement calls to
stored procedures in the database as described in the section “Calling Stored Procedures”
earlier in this chapter. The syntax is similar to the one shown in Listing 4-3 in the section
on logic in entity objects, starting with getDBTransaction() to get a handle to the current
transaction that all view object instances participate in.

If you create a client interface for an application module method, it shows up in the
Data Controls pane next to the built-in Commit and Rollback operations. You can either
just drag the operation onto a page fragment as an ADF button, or create an operations
binding for the method and call it from a managed bean.

Exposing Logic to Clients
By default, logic you add to your view objects or application modules is not available to
the user interface layer. In order to make your methods available, you need to create a
client interface from the Java tab of your view object or application module. Figure 4-13
shows creating a client interface for a view object.

Figure 4-13. Creating a client interface

Chapter 4 ■ Business LoGiC

103

For a view object, you can create client interfaces for both the view object class and
the view row class. For application modules, there is only one type of client interface. All
the methods in the class show up on the left side of the Edit Client Interface dialog, and
you shuffle the ones you want to be exposed to the Selected box to the right.

When you have exposed your methods like this, they show up in the Data Control
panel next to the attributes, as shown in Figure 4-14.

Once your methods show up in the Data Controls pane, they can be dragged onto
pages or page fragments and dropped as ADF action elements (button or command link).
If you want to use a method from a Java Bean in the user interface, you need to create an
Action binding from the Binding tab on the relevant page, as shown in Figure 4-15. We’ll
return to using Java beans in the user interface in Chapter 5.

Figure 4-14. A client method exposed in the Data Controls pane

http://dx.doi.org/10.1007/978-1-4842-2820-3_5

Chapter 4 ■ Business LoGiC

104

Figure 4-15. Creating a binding for a client method

Conclusion
In this chapter, you have seen how you can extend the standard functionality of ADF
business components with your own logic. In some cases, you override the normal ADF
methods, add functionality, or even completely replace standard ADF processing. In
other cases, you add your own logic to view objects or application modules and make this
logic available to the user interface layer with client interfaces.

In the next chapter, you will see how to add business logic in the user interface layer.

105© Sten Vesterli 2017
S. Vesterli, Oracle ADF Survival Guide, DOI 10.1007/978-1-4842-2820-3_5

CHAPTER 5

Presentation Logic

As you saw in Chapter 1, ADF handles all the basic functionality of getting data from
the database onto the web page, accepting changes, and storing data back. It’s not
until you want something other than the default functionality that you need to start
writing code.

This chapter describes how to add logic to the presentation layer. ADF offers
several ways:

•	 Prebuilt UI component validators (declarative)

•	 Managed beans (server-side Java code)

•	 Custom client-side JavaScript

Prebuilt Validators
You saw in Chapter 4 that it is possible to add a lot of validation to business component
attributes, both declarative and programmatic. But this validation happens on the server,
necessitating a server roundtrip. Some types of validation are so simple that they can be
handled by client-side JavaScript, and ADF offers several prebuilt validators.

You find these in the Components window under the Operations heading near the
bottom. They are shown in Figure 5-1.

http://dx.doi.org/10.1007/978-1-4842-2820-3_1
http://dx.doi.org/10.1007/978-1-4842-2820-3_4

Chapter 5 ■ presentation LogiC

106

To use one of these, you simply drop them onto a relevant UI component, for
example, an Input Text. When you have done this, they will appear in the Source view of
the page, as shown in Listing 5-1.

Listing 5-1. Example of Declarative Validator in Page Source

<?xml version='1.0' encoding='UTF-8'?>
<ui:composition xmlns:ui=http://java.sun.com/jsf/facelets
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:f="http://java.sun.com/jsf/core">
 <af:pageTemplate viewId="/HrDemoPageFragmentTemplate.jsf" id="pt1">
 <f:facet name="content">
 <af:panelFormLayout id="pfl1">
...
 <af:inputText value="#{bindings.CommissionPct.inputValue}"
 label="#{bindings.CommissionPct.hints.label}"
 required="#{bindings.CommissionPct.hints.mandatory}"
 columns="#{bindings.CommissionPct.hints.displayWidth}"
 shortDesc="#{bindings.CommissionPct.hints.tooltip}" id="it7">

Figure 5-1. Declarative validators for UI components

Chapter 5 ■ presentation LogiC

107

 <f:validator binding="#{bindings.CommissionPct.validator}"/>
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.CommissionPct.format}"/>
 <af:validateDoubleRange minimum="0.0" maximum="0.5"
 messageDetailMaximum="Max commission is 0.5"/>
 </af:inputText>
...
 </af:panelFormLayout>
 </f:facet>
 </af:pageTemplate>
</ui:composition>

They also appear in the Structure window in the bottom left corner of the JDeveloper
window, as shown in Figure 5-2.

When you select the validator in either source view or the Structure window, its
properties are shown in the Properties window. Here you can configure the validator and
provide the message to be shown to the end user if the validation fails.

Declarative validations run on the client and are triggered as soon as the user leaves
the field. Figure 5-3 shows the result displayed in the user interface when a declarative
validation fails.

Figure 5-2. Declarative validator in Structure window and its properties

Chapter 5 ■ presentation LogiC

108

Adding Managed Beans
When you need to apply logic in the user interface layer of the application (for advanced
validations, calculations, etc.), you write managed beans in Java and connect them to the
items on your page. In ADF (and JSF), the actual user interface is kept separate from the
presentation logic by splitting these two functions into different files:

•	 The user interface is stored in the JavaServer Faces (JSF) and
JavaServer Faces Fragment (JSFF) files

•	 The presentation logic source code is stored in Java bean files

Your application will contain many Java files. You declare which ones are part
of the presentation layer by defining them as managed beans in your task flows, and
then connect them to your user interface components by setting properties of the UI
components to refer to the bean classes using Expression Language syntax.

The ADF framework manages these beans for you. This means that they are
automatically instantiated at the right time, and automatically destroyed when they are
no longer needed. How long they exist is determined by their scope, described in a later
section.

Bean Classes
All classes you want to use in the user interface layer of your application must be valid
Java beans. That means that they must

 1. Have a public, no-argument default constructor.

 2. Allow access to all properties with standard setter and getter
methods.

 3. Be serializable.

The constructor is simply a method with the same name as the class, taking no
arguments. The ADF framework calls this method when it creates an instance of the
bean class.

Figure 5-3. Message to user when declarative validation fails

Chapter 5 ■ presentation LogiC

109

The setter and getter methods must be named in accordance with the JavaBean
conventions. If for example the bean has a String attribute called firstName, it must have
setFirstName() and getFirstName() methods.

 ■ Note the attributes in your Java Bean source code must start with a lowercase letter.

That the bean is serializable means that it can be stored and deleted from memory,
and later restored completely with all the internal state it had earlier. This is necessary for
all beans you intend to use with a scope longer than Request.

 ■ Note short-lived beans (request and BackingBean) will never have to be stored and
restored, so they don’t need to be serializable.

A typical bean that only contains attribute values and code can be made serializable
simply by implementing the java.io.Serializable interface. Note that UI components
and business components are not serializable, so you should not attempt to store these in
your managed beans.

Bean Scope
You add managed beans to an ADF application by defining them as part of your bounded
task flow. Whenever you add a bean, you also define its scope. If you are familiar with JSF,
you will recognize Application, Session, View, and Request scopes, but ADF has more
scopes. The following scopes exist in an ADF application, in order from the longest-lived
to the shortest-lived:

•	 Application: Beans in application scope last until the application
stops. This means they persist across user sessions—the user
can close his browser and access the application days later and
still find the same values in application scope. They are not
cleared until an application server administrator terminates the
application on the server (or it crashes). This can be used for
application configurations you want to store in memory

•	 Session: Beans in session scope are created when the user
first accesses an application and last until the user session
ends—either because the user closes the browser or because
the session times out due to inactivity. Session scoped beans are
dangerous if the user should decide to run two instances of the
application in the same browser. Some browsers will consider two
instances of the application on separate browser tabs to be part
of the same session, while other browsers will consider them two
separate sessions.

Chapter 5 ■ presentation LogiC

110

•	 PageFlow: Beans in page flow scope are created when the user
accesses the first page in a page flow and last until she leaves the
page flow. They are useful in bounded task flows to store values
that need to be accessible from all pages and other elements of
the task flow. Page flow scope beans created in the unbounded
task flow containing the master page are good places to store
information you want to be available as long as the user is
running the application. They are safer than session scope beans
because they will always be separate for separate instances of the
application, irrespective of how the browser handles sessions.

•	 View: Beans in view scope exist for the duration of a specific view
(page or page fragment). Both JSF and ADF define a view scope;
in an ADF application, you always get the ADF view scope when
you refer to a bean.

•	 Request: Beans in request scope exist for the duration of one
request (i.e., one server roundtrip). A bean in this scope can
be accessed from all task flows on a page. This means that if a
bounded task flow exists in two instances on the same page, a
request scope bean is shared between them. This is normally not
desirable, so you should prefer backing bean scope for short-lived
beans.

•	 BackingBean: Beans in backing bean scope exist only for the
duration of a request; this isolates separate instances of the same
bounded task flow on a page. Use this scope for pure logic without
state—code that needs to run in response to an event. As soon
as the request is processed and the response sent back to the
browser, a backing bean scope bean is terminated.

When you start out with ADF, try to limit yourself to PageFlow and BackingBean
scopes: PageFlow for everything that needs to be stored for longer periods, and
BackingBean for pure logic without state. This makes your code simpler and reduces
the risk that one developer on your team stores something in one scope and another
developer expects to find it in another.

Adding a Bean to the User Interface
JDeveloper offers you a couple of convenient shortcuts to add beans directly to the user
interface elements on a page.

Adding a Bean to a Button
If you simply double-click a button in the Design view of a page in JDeveloper, the Bind
Action Property dialog is shown. From this, you can either select an existing managed
bean or click New to open the Create Managed Bean dialog shown in Figure 5-4.

Chapter 5 ■ presentation LogiC

111

In this dialog, you enter a bean name and a class name. The bean name is used when
referring to the bean in expression language expressions and the class name is the name
of the corresponding Java file. By convention, the bean name starts with a lowercase
letter and the class name starts with an uppercase letter. Beans related to a specific page
(typically BackingBean scope) should be named after that page, and beans related to a
whole task flow (often PageFlow scope) should be named after the flow.

You define the package your beans go into; by convention, beans go into a .beans
subpackage under the base package of your view/controller project. Finally, you select a
scope and leave the check box to create the class checked.

When you click OK, you are returned to the Bind Action Property dialog shown in
Figure 5-4. JDeveloper will have filled in the Method field with something it has made
up. Don’t accept this default; click in the field and type a useful method name before you
click OK. JDeveloper creates your class, which will look something like Listing 5-2.

Listing 5-2. Backing Bean Example

package com.vesterli.hrdemo.deptemp.view.beans;

public class EmpPage {
 public EmpPage() {
 }

Figure 5-4. The Create Managed Bean dialog

Chapter 5 ■ presentation LogiC

112

 public String giveRaise() {
 // Add event code here...
 return null;
 }
}

If you look at the Action property for the button you clicked, you will find that
JDeveloper has automatically filled it in with the correct value for the scope, class name,
and method name you selected: #{backingBeanScope.empPage.giveRaise}.

If you look at the task flow your page or page fragment is part of, you can see on the
Managed Beans subtab on the Overview tab that the bean has been added, as shown in
Figure 5-5.

Adding a Bean to a databound Component
You can also add a bean by double-clicking a databound component like an Input Text.
The Bind Validator Property dialog appears and allows you to create a new bean as shown
in the preceding, or select an existing bean. You must provide a method name for your
data validation, and JDeveloper will automatically place the method in your bean code
and set the Validator property on the item.

For all UI components bound to business component attributes, it is normally better
to place the validation on the business component. In this way, you only need to define
the validation once and have it applied everywhere. If you decide to implement a custom
validator in a bean, your bean code needs to throw a ValidatorException to indicate to
ADF that the validation failed. One of the parameters to this exception is an instance of
FacesMessage object containing the severity and the message text. Listing 5-3 shows an
example of a validation method.

Listing 5-3. Validator Method in a Managed Bean

package com.vesterli.hrdemo.deptemp.view.beans;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

Figure 5-5. A managed bean added to a task flow

Chapter 5 ■ presentation LogiC

113

import javax.faces.context.FacesContext;
import javax.faces.validator.ValidatorException;

public class EmployeeBean {
 public EmployeeBean() {
 }
...
 public void salaryValidator(FacesContext facesContext,
 UIComponent uIComponent, Object object)
 throws ValidatorException {
 if (object != null) {
 int sal = Integer.valueOf(object.toString());
 if((sal % 10) != 0) {
 throw new ValidatorException(
 new FacesMessage(FacesMessage.SEVERITY_WARN,
 "Salary should be round number", null));
 }
 }
 }
}

Adding a Bean to a Task Flow
While the ability to add a bean and method directly to a button is useful, in most cases
you need more control over the process. The normal way of adding a bean to a task flow is
to first create the class and then add it to the relevant task flow.

You create the class like any other Java class. Then open the task flow where you
want to use it and select the Overview tab and then the Managed Beans subtab to the
right. Click the green plus sign, provide a bean name, point to the class and select a scope.
When your bean is added, it looks as shown in Figure 5-5.

Interacting with UI Components
If your bean code needs to interact with UI components on the page, you need to create a
component reference in the bean code and connect it to the UI components on the page.
For example, you might want to add a new field for a suggested raise, and a button calling
Java logic to read the existing salary and suggest a raise, as shown in Figure 5-6.

Chapter 5 ■ presentation LogiC

114

Creating a Component Reference
In the bean, you create a property that is an instance of ComponentReference, and setter
and getter methods that use the class corresponding to the UI component. The name
of the UI component class is generally “Rich” followed by the component name—for
example, the RichInputText corresponds to an Input Text element. All of these classes
are fund in subpackages under oracle.adf.view.rich.component.

 ■ Tip the full aDF richClient api documentation can be found at http://jdevadf.
oracle.com/adf-richclient-demo/docs/apidocs/index.html.

The code in Listing 5-4 shows an implementation of two component references:
one for the input text element containing the existing salary value (e.g., from a business
component) and one for another input text element that will contain the calculated raise.
The SuggestRaise() method calculates 5% of the current salary and places that value
into the suggested raise field.

Figure 5-6. Example of screen interacting with bean logic

http://jdevadf.oracle.com/adf-richclient-demo/docs/apidocs/index.html
http://jdevadf.oracle.com/adf-richclient-demo/docs/apidocs/index.html

Chapter 5 ■ presentation LogiC

115

Listing 5-4. Example of a Bean Manipulating UI Component Values

package com.vesterli.hrdemo.deptemp.view.beans;

import org.apache.myfaces.trinidad.util.ComponentReference;
...

public class EmpPage {
 private ComponentReference salary;
 private ComponentReference raise;

 public void setSalary(RichInputText salary) {
 this.salary = ComponentReference.newUIComponentReference(salary);
 }

 public RichInputText getSalary() {
 if (salary != null) {
 return (RichInputText)salary.getComponent();
 } else {
 return null;
 }
 }

 public void setRaise(RichInputText raise) {
 this.raise = ComponentReference.newUIComponentReference(raise);
 }

 public RichInputText getRaise() {
 if (raise != null) {
 return (RichInputText)raise.getComponent();
 } else {
 return null;
 }
 }

 public String suggestRaise() {
 BigDecimal orgSal = (BigDecimal)getSalary().getValue();
 BigDecimal suggestedRaise = orgSal.multiply(new BigDecimal(0.05));
 suggestedRaise = suggestedRaise.setScale(0, BigDecimal.ROUND_DOWN);
 getRaise().setValue(suggestedRaise);
 AdfFacesContext.getCurrentInstance().addPartialTarget(getRaise());
 return null;
 }
 ...
}

Chapter 5 ■ presentation LogiC

116

Note that getValue() in SuggestRaise() returns a generic Object. Because we are
retrieving from salary, which is bound to a numeric field, that object can be cast to a
BigDecimal. We then create another BigDecimal, do some calculations and rounding,
and finally get the raise components and set its value.

It would be wasteful for ADF to automatically refresh the page every time an attribute
changes. We must therefore explicitly ask for a component refresh, which we do by
pushing it onto the list of objects to be redrawn with addPartialTarget().

You would only need to call setValue() on UI components that are not bound to a
data source. If you want to change a value of a component that has a binding to a business
component attribute, you should change the value of the bound attribute directly, as
described in the section “Interacting with Business Components” later in this chapter.

Connecting the Bean to the UI Components
To connect the component references in the bean to the UI components, the Binding
property of the components must be set to point to the bean attribute. To set the property,
you can click the gearwheel icon to the right of the property and choose Edit to bring up
the Edit Property: Binding dialog shown in Figure 5-7.

When you select a managed bean, the Property drop-down will only display the
attributes in the bean of the right type. In this example, you would need to set the
Binding property for both the salary and suggested raise fields. To make the button
call suggestRaise(), you’d have to set the Action property of the button as described
previously.

Figure 5-7. The Edit Property Binding dialog

Chapter 5 ■ presentation LogiC

117

 ■ Note You can also create or select a bean and then click New next to Property to
create a new property. if you do so, you will have to change the code slightly to include a
ComponentReference, as shown in Listing 5-4.

Interacting with Business Components
When you want to work with business components from the user interface layer, you go
through the binding layer. Don’t try to access database data directly, because the rest
of your application does use the binding layer. If one part of your application tries to
circumvent the binding layer, you will get mysterious and hard-to-find bugs.

The Binding Layer
To see the available bindings on a page, you select the Bindings tab at the bottom of
the page window. You will see a graphical representation of your bindings, as shown in
Figure 5-8.

Figure 5-8. Attribute value and action bindings

Chapter 5 ■ presentation LogiC

118

ADF automatically creates bindings for you when you drop something from the Data
Controls pane onto a page or page fragment:

•	 When you drop an individual attribute, you get an attributeValues
binding and a single-attribute component like an Input Text. The
FirstName binding on Figure 5-8 is an attributeValue binding.

•	 When you drop an operation, you get an action binding and an
action component like a Button. The Previous binding on Figure
5-8 is an action binding.

•	 When you drop a whole view object instance, you get a tree
binding and a multiattribute component like a Table. Figure 5-9
shows a tree binding.

If you want to access an attribute that you haven’t dropped onto a page, you must
create an attribute binding by hand by clicking the green plus sign on the Bindings tab.

 ■ Tip if you want JDeveloper to help you, you can also try dropping an element on
the page and then deleting the matching Ui component in the source view of the page.
if you delete the component from the Design tab or the Structure window, JDeveloper
automatically cleans up and removes the corresponding binding. But if you delete a
component on the Source tab, JDeveloper leaves the binding intact.

Figure 5-9. Tree binding

Chapter 5 ■ presentation LogiC

119

Accessing the Binding Layer
In order to access the binding layer from your code, the first thing you need to do is to
create an instance of a BindingContainer, as shown in Listing 5-5.

Listing 5-5. Getting a BindingContainer

import oracle.adf.model.BindingContext;
import oracle.binding.BindingContainer;
...
public class EmpPage {
...
 public String processEmp {
 BindingContainer bc =
 BindingContext.getCurrent().getCurrentBindingsEntry();
 ...
 }
...
}

You normally don’t have to type import statements when writing code in JDeveloper;
the tool automatically provides suggestions. However, there are several options for both
BindingContainer and BindingContext: you should choose the ones shown in Listing 5-5.

Getting the BindingContainer is something you’ll be doing a lot in your code, so it
makes sense to create a method for this in a utility class in your utility code project.

Accessing an Attribute Value
When you have a BindingContainer object, you can retrieve an attribute binding from it,
as shown in Listing 5-6.

Listing 5-6. Getting Attribute Values

...
import java.math.BigDecimal;
import java.sql.Timestamp;

import oracle.adf.model.BindingContext;
import oracle.binding.AttributeBinding;
import oracle.binding.BindingContainer;
...

public class EmpPage {
...
 public String getEmpValues() {
 ...

Chapter 5 ■ presentation LogiC

120

 AttributeBinding fnb =
 (AttributeBinding)bc.getControlBinding("FirstName");
 AttributeBinding salb =
 (AttributeBinding)bc.getControlBinding("Salary");
 AttributeBinding hdb =
 (AttributeBinding)bc.getControlBinding("HireDate");
 String firstName = (String)fnb.getInputValue();
 BigDecimal sal = (BigDecimal)salb.getInputValue();
 Timestamp hireDate = (Timestamp)hdb.getInputValue();
 ...
 return null;
 }
}

The attribute name must be spelled exactly as written in the view object, with the
exact same use of upper- and lowercase.

The signature of the getInputValue() method is that it returns a generic Object.
However, ADF uses the object defined for the attribute on the Attributes tab in the view
object, so you can cast the output of getInputValue() to the relevant type. The view object
wizard in JDeveloper will create objects based on the Data Type Map setting defined
when you initialize the model project for business components. When you use the default
Java Extended for Oracle mapping, the following mappings occur:

•	 Database VARCHAR2 becomes java.lang.String

•	 Database NUMBER becomes java.math.BigDecimal

•	 Database DATE becomes java.sql.Timestamp

Accessing an Operation
As you saw in Chapter 4, business components come with built-in operations, and you
can create your own operations. All the built-in operations and the operations that you
have decided to expose to the user interface layer show up in the Data Controls pane in
the Applications window.

 ■ Tip if one of your custom operations doesn’t show in the Data Controls pane, even
after refreshing it with the blue double arrow icon, you probably forgot to create a client
interface. see Chapter 4.

To execute an operation from managed bean code, you also go through the binding
layer. The necessary code is shown in Listing 5-7.

http://dx.doi.org/10.1007/978-1-4842-2820-3_4
http://dx.doi.org/10.1007/978-1-4842-2820-3_4

Chapter 5 ■ presentation LogiC

121

Listing 5-7. Executing an Operation

...
import java.util.List;
import java.util.Map;
import oracle.adf.model.BindingContext;
import oracle.binding.OperationBinding;
...
public class EmpPage {
...
 public String changeDept(Integer empId, Integer deptId) {
 ...
 OperationBinding ob = bc.getOperationBinding("moveDept");
 Map obParam = ob.getParamsMap();
 obParam.put("empId", empId);
 obParam.put("deptId", deptId);
 Object result = ob.execute();
 if(!ob.getErrors().isEmpty()) {
 handleErrors(ob.getErrors());
 return null;
 }
 ...
 return null;
 }
}

Like the attribute binding, the name of the operation must be exactly as you see it on
the Bindings tab, including use of upper- and lowercase.

Your operation might take one or more parameters. If this is the case, you retrieve
a Map object from the operations binding and place your parameters in this map. If you
don’t have any parameters to pass, you don’t need these lines of code.

Executing an operations binding always returns a generic Object; depending on the
underlying code, that might or might not be useful in the bean calling the method.

You should always call getErrors() to check if anything went wrong when executing
the operation. The return value from this method is a java.util.List object containing
Throwable objects for any errors.

Accessing an Iterator
When you want to work with a whole data set, not just a single value, you need to
access the iterator of a tree binding. To do this, you cast your binding container to a
DCBindingContainer, as shown in Listing 5-8.

Chapter 5 ■ presentation LogiC

122

Listing 5-8. Iterating over a Data Set

...
import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCIteratorBinding;
import oracle.adf.view.rich.component.rich.data.RichTable;
import oracle.adf.view.rich.context.AdfFacesContext;
import oracle.jbo.Row;
...

public class EmployeeBean {
 ...
 private ComponentReference empTab;
 ...
 public void setEmpTab(RichTable empTab) {
 this.empTab = ComponentReference.newUIComponentReference(empTab);
 }
 public RichTable getEmpTab() {
 if (empTab != null) {
 return (RichTable)empTab.getComponent();
 } else {
 return null;
 }
 }
 ...
 public String DeptRaise() {
 BindingContainer bc =
 BindingContext.getCurrent().getCurrentBindingsEntry();
 DCBindingContainer dcb =(DCBindingContainer)bc;
 DCIteratorBinding iter =
 (DCIteratorBinding)dcb
 .findIteratorBinding("EmployeesInDeptVOIterator");
 Row[] allRows = iter.getAllRowsInRange();
 BigDecimal currSal;
 for (Row r: allRows) {
 currSal = (BigDecimal)r.getAttribute("Salary");
 r.setAttribute("Salary", currSal.multiply(new BigDecimal(1.05))
 .setScale(0, BigDecimal.ROUND_DOWN));
 }
 AdfFacesContext.getCurrentInstance().addPartialTarget(getEmpTab());
 return null;
 }
}

Chapter 5 ■ presentation LogiC

123

You retrieve the iterator binding from the container with findIteratorBinding().
Like all other bindings, you must type the name exactly as it exists on the Bindings tab.
This iterator has a number of useful functions, one of which is getAllRowsInRange(),
which returns an array of Row objects. In the preceding example, we simply loop over this
array and give everybody a raise of 5%.

Changing the value of the attribute does not in itself update the UI component. To
get the ADF table that displays the data from the iterator to update itself, we need to

•	 Create a ComponentReference for the table component

•	 Create setter and getter methods receiving and returning a
RichTable

•	 Set the Binding property of the table to our RichTable property
(with an expression like #{backingBeanScope.EmployeeBean.
empTab})

•	 Add the table to the ADF Faces Context as a partial page rendering
target with AdfFacesContext.getCurrentInstance().addPartia
lTarget(getEmpTab());

Working with Selected Rows
If you want to work with the current record in the ADF table that displays data from an
iterator, you might try the getCurrentRow() method that exists in the DCIteratorBinding
object. However, that method returns the current row in the view object instance, not the
currently selected row in the user interface. To access the selected row or rows in an ADF
table component, you need to work with the table component first.

An ADF table has a property rowSelection that you can set to none, single, and
multiple. When you drop a view object instance on a page, this is one of the selections
you can make in the Create Table wizard, but you can of course always change it later.
If you allow selection in a table, you can then retrieve the Key object for all selected
records with the getSelectedRowKeys() method from the RichTable object connected to
the UI component, as shown in Listing 5-9.

Listing 5-9. Working with Selected Rows in a Table

...
import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCIteratorBinding;
import oracle.adf.view.rich.component.rich.data.RichTable;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.RowSetIterator;
import org.apache.myfaces.trinidad.model.RowKeySet;
...
public class EmpPage {
 ...

Chapter 5 ■ presentation LogiC

124

 private ComponentReference empTab;
 ...
 public void setEmpTab(RichTable empTab) {
 this.empTab = ComponentReference.newUIComponentReference(empTab);
 }
 public RichTable getEmpTab() {
 if (empTab != null) {
 return (RichTable)empTab.getComponent();
 } else {
 return null;
 }
 }
 ...
 public String ProcessEmps() {
 RowKeySet selectedEmps = getEmpTab().getSelectedRowKeys();
 Iterator selIter = selectedEmps.iterator();
 BindingContainer bc =
 BindingContext.getCurrent().getCurrentBindingsEntry();
 DCBindingContainer dcb =(DCBindingContainer)bc;
 DCIteratorBinding empIter =
 (DCIteratorBinding)dcb.
 findIteratorBinding("EmployeesInDeptVOIterator");;
 RowSetIterator rsi = empIter.getRowSetIterator();
 Row curr = null;
 while (selIter.hasNext()) {
 Key key = (Key)((List)selIter.next()).get(0);
 curr = rsi.getRow(key);
 // process row
 ...
 }
 return null;
 }
}

When you have the set of row keys, you can get an Iterator object for the selected
rows. This is an iterator over rows in the user interface and has nothing to do with the
iterator connected with the view object instance.

To actually work with the data of the selected rows, you still need the
DCIteratorBinding as in the previous example. However, in this case, we get a
RowSetIterator from it. The advantage of this object is that it makes it easy to find a
specific row based on its key. As we loop over all the selected rows, we can retrieve the
Key and then use that to retrieve the actual row from the view object with getRow(key).

Chapter 5 ■ presentation LogiC

125

Interacting with the User
When a validation fails, you can use the default communication that ADF provides. This
mechanism shows one or more messages and highlights any fields that fail validation. If
you want more control over the messages displayed to your users, you need to create your
own messages through using the JSF context. This object is created automatically and
handles all the information around a server roundtrip.

Default Message
When you add your own messages to the JSF faces context, as shown in Listing 5-10, they
are added to all the other messages your application wants to display to the user and
displayed together in one dialog box.

Listing 5-10. Displaying a Message to the User in Default Position

...
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
...
public class DeptPage {
 ...
 public String ShowMessage() {
 FacesContext fctx = FacesContext.getCurrentInstance();
 FacesMessage fm = new FacesMessage("General message");
 fm1.setSeverity(FacesMessage.SEVERITY_WARN);
 fctx.addMessage(null, fm);
 return null;
 }
 ...
}

As you can see, you create your message as FacesMessage objects with a message
text and optionally set a severity. There are four severities available:

•	 SEVERITY_FATAL (not often used; a fatal error typically crashes
the application)

•	 SEVERITY_ERROR

•	 SEVERITY_WARN

•	 SEVERITY_INFO

When you add the message to the faces context with null as the first parameter,
as shown in the preceding, the message is displayed centered in the upper half of the
application window, as shown in Figure 5-10.

Chapter 5 ■ presentation LogiC

126

Message Related to a Component
If your message is related to a specific UI component on the page, you can provide the
client ID of that item as the first parameter. Listing 5-11 shows this.

Listing 5-11. Displaying a Message to the User in Relation to a Specific Component

...
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import oracle.adf.view.rich.component.rich.input.RichInputText;
...
public class DeptPage{
 private ComponentReference dname;
 ...
 public void setDname(RichInputText dname) {
 this.dname = ComponentReference.newUIComponentReference(dname);
 }

 public RichInputText getDname() {
 if (dname != null) {
 return (RichInputText)dname.getComponent();
 } else {
 return null;
 }
 }
 ...
 public String ShowAnother() {
 FacesContext fctx = FacesContext.getCurrentInstance();

Figure 5-10. Message in default location

Chapter 5 ■ presentation LogiC

127

 FacesMessage fm = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Summary", "This is the detailed message");
 String dnameItem = getDname().getClientId(fctx);
 logger.finer("Dname field is " + dnameItem);
 fctx.addMessage(dnameItem, fm);
 return null;
 }
 ...
}

This requires that the component is connected to a bean property—in the
preceding example, the Binding property of the department name item is set to
#{backingBeanScope.deptPage.dname}.

Note that even though the first parameter of addMessage() is technically just a
String, you can’t just write the component ID here. You need the full location of the
component, which depends on all the containers enclosing the component. The correct
value will be something like pt1:r1:0:pt1:it2, so you should let getClientId() handle
that for you.

When you place the message together with the component, it looks as shown in
Figure 5-11.

It is possible to add both general and component-aligned messages to a page. ADF
does its best to show all of them, but the result is confusing to most users. If you are going
to add your own messages, use only one position.

Figure 5-11. Message aligned with UI component

Chapter 5 ■ presentation LogiC

128

Using a Message Area
If you don’t want your general messages displayed in a pop-up window, you can also add
an inline Messages component (<af:messages inline="true">) somewhere on your page.
All general (not component aligned) ADF messages will then be displayed in this area.

Logic in Task Flows
With managed beans, you can implement custom behavior in your pages, but you can
also add your own code to control behavior in task flows.

Calling Managed Beans Task Flows
If you want to run some code between two pages in your task flow, you drop a Method Call
activity from the Components window onto the Diagram view of your task flow. Give your
method call a name and set the Method property to point to the method you want to execute.
You can click the gearwheel icon to the left of the field to bring up the Method Expression
Builder. This allows you to click your way to the method you need, as shown in Figure 5-12.

Figure 5-12. Method Expression Builder

Chapter 5 ■ presentation LogiC

129

When you have set the Method, you use regular Control Flow Case arrows to connect
your Method Call to the other activities in the task flow. You need exactly one arrow going
away from the Method Call, and the text on that Control Flow Case must match the value
of the Fixed Outcome property.

Using Business Logic in Task Flows
You can also add logic from business components. Every operation shown in the Data
Controls pane in the Applications window can be dragged onto the Diagram view and
automatically becomes a Method Call activity. JDeveloper automatically establishes a
binding if it doesn’t already exist, and sets the Method property to match. The value will
be something like #{binding. CreateWithParams.execute}.

Remember that you can add your own methods to ADF business components. If you
have selected to create a Client Interface for your method, it shows up in the Data Control
pane and can be used just like the built-in ADF operations.

How to Use Router Components
Method Call activities always have one outcome and the task flow follows the matching
arrow to the next activity. However, you can make branching decisions in task flows using
a Router activity.

A Router can have any number of Control Flow Cases leading away to other activities.
One of these must match the Default Outcome property of the Router. In addition to this,
you can define a number of Cases, each matching an Expression to an Outcome (arrow).

The expressions are written in Expression Language with the #{ … } syntax, or you
can use the Expression Builder to click together an expression. Notice that the Expression
Builder contains operands you can use to compare values.

 ■ Tip a literal value in expression Language is written with single quotes inside the curly
brackets, like this: #{'This is a literal value'}.

For any logic more complicated than simple comparisons, it is normally best to
create a method in a managed bean that does the necessary calculations. Expression
Language quickly becomes hard to read.

Task Flow Switching Logic
In earlier chapters, we have seen that an enterprise ADF application is normally
structured with a number of bounded task flows using page fragments and a master
page containing a menu structure and handling security. To allow switching between
task flows from a menu on the master page, we need a Dynamic Region component and
some code.

Chapter 5 ■ presentation LogiC

130

How Dynamic Regions Work
When you drag a task flow onto a page, you are given the option to create either a Region
or a Dynamic Region. For static test pages, you can just create a static Region, but in a
master page that should be able to show different task flows, you need a Dynamic Region.

The UI component on the page is an <af:region> in both cases, but if you choose a
dynamic region, JDeveloper will help you create the additional code necessary.

When you create a static region, JDeveloper just creates a task flow binding pointing
to the fixed path of the task flow. This will look something like /WEB-INF/dept-emp-flow.
xml#dept-emp-flow.

When you create a dynamic region, JDeveloper does several things:

•	 Creates a task flow binding pointing to a managed bean. This
will look something like ${viewScope.PageSwitcherBean.
dynamicTaskFlowId}.

•	 Prompts you for a name for the bean controlling the region and
fills the bean class with sample content.

•	 Adds the bean to the unbounded task flow of the view project.

Building the Master Page
When you have built the first two task flows, whether in one subsystem or two, you can
create the master application and the master page with task flow switching.

First, you need to create a template for the master page. This is done in the
foundation workspace. Your template needs two facets: one for a menu and one for the
page content. Normally, you would use a Panel Grid Layout with two rows of each one
cell, setting the height of the top row to a small value like 30 pixels for the menu. The
second row should take up all remaining space, so its height should be Auto. In the top
cell, place a facet for the menu, and in the bottom cell, place a facet for the content.

In accordance with the modular ADF application architecture, the master
application needs to have access to all the components that make up the application. This
means that you need to add all the ADF libraries from your foundation layer as well as the
ADF libraries containing the subsystems to the master workspace.

When you have added all the libraries, create the master page based on the template.
In the menu facet, drop a Menu Bar component and then add one or more Menu
components. On the Menu, you then drop Menu Item components that correspond with
the task flows you want to display.

When you have created the menu, you open the subsystem ADF Library in the
Resources window, as shown in Figure 5-13. Under the ADF Task Flows heading, you see
all the task flows in the ADF Library. Drop one of these onto the content facet of your
master page and choose Dynamic Region to get JDeveloper to do the necessary work
described in the preceding section.

Chapter 5 ■ presentation LogiC

131

When you run this master page, you should see the page showing the menu and the
one task flow you dropped on the page.

Storing State
The bean controlling the dynamic region has to be in view scope. This means it only exists
while a specific page is being displayed, so it can’t store which task flow is selected. For
this, we need another bean with a longer scope. A good choice is to create a bean with
page flow scope in the unbounded task flow in the master application. When the master
application is started, the unbounded task flow starts, instantiates its page flow scope
beans, and displays the master page. Because the unbounded task flow in the master
application is active as long as the application runs, a bean in this scope will last as long
as the application runs.

Figure 5-13. The Resources window showing task flows from subsystems

Chapter 5 ■ presentation LogiC

132

You need to create a state storing bean that looks as shown in Listing 5-12.

Listing 5-12. Bean for Storing Selected Task Flow

package com.vesterli.hrdemo.master.view.beans;

import java.io.Serializable;

public class UiStateBean implements Serializable {
 private String currentTF = "/WEB-INF/dept-emp-flow.xml#dept-emp-flow";

 public void setCurrentTF(String s) {
 this.currentTF = s;
 }

 public String getCurrentTF() {
 return currentTF;
 }
}

This bean simply holds a String variable containing the path to the selected task flow.
It should be initialized with the first task flow you want your application to display.

You need to add this bean to the unbounded task flow (adfc-config.xml) in the
view project of the master workspace in pageFlow scope.

Using Stored State
When you have a bean to store application state, you need to change the bean that
provides the current task flow to the dynamic region. This bean already has some content
that JDeveloper automatically created, but it should be changed to look like Listing 5-13.

Listing 5-13. Bean for Providing Task Flow ID to Dynamic Region

package com.vesterli.hrdemo.master.view.beans;

import java.io.Serializable;
import oracle.adf.controller.TaskFlowId;

public class PageSwitcherBean implements Serializable {
 private UiStateBean currentUiState;

 public PageSwitcherBean() {
 }

Chapter 5 ■ presentation LogiC

133

 public TaskFlowId getDynamicTaskFlowId() {
 return TaskFlowId.parse(currentUiState.getCurrentTF());
 }

 public void setUiState(UiStateBean state) {
 currentUiState = state;
 }
}

This bean now contains a private instance of the UI State bean and a method to set
it. It still contains the getDynamicTaskFlowId() method created by JDeveloper, but the
method now returns the string stored in the private UI state bean.

Connecting the Beans
In order to get ADF to pass the UI State bean to the page switcher bean each time it
is initialized, we use an ADF feature called managed properties. All of the beans are
managed beans; that is, the ADF framework creates and destroys them. But ADF can
also manage the properties of these beans. This is done under the Managed Properties
heading on the Overview tab of a task flow, as shown in Figure 5-14.

To set this property, first select the page switcher bean and then click the green plus
sign next to Managed Properties to create a new managed property. Whenever the page
switcher bean is created, ADF will automatically set the property. The setter method
matching the Name of the property will be called with the content of the Value property.
For example, if the name is uiState, ADF will call setUiState(). In Figure 5-14, you see
that the Value is #{pageFlowScope.UiStateBean}. This means that the UiStateBean from
the page flow scope is always inserted into the page switcher bean whenever it is created.

Figure 5-14. Using a managed property to connect UI state to page switcher bean

Chapter 5 ■ presentation LogiC

134

Connecting Menu Items
With all the code in place, we now need to actually set some values when the user selects
a menu item. This is done by dropping a Set Property Listener component from the
Operations section in the Components window onto each menu item. This brings up the
Insert Set Property Listener dialog shown in Figure 5-15.

Figure 5-15. The Insert Set Property Listener dialog

The From parameter is a literal value as an Expression Language expression: the path
to the task flow you want that menu item to show. The To parameter is the property in
your UI state bean that you want the value assigned to, and the Action parameter is when
you want the assignment to happen. For a property listener on a menu item, you want the
assignment to happen on action (i.e., when the user selects the menu item).

In the Source view of your page, your menu with set property listeners will look
something like Listing 5-14.

Listing 5-14. A menu with property listeners

...
 <af:menuBar id="mb1">
 <af:menu text="Employees" id="m1">
 <af:commandMenuItem text="Departments" id="cmi1">
 <af:setPropertyListener
 from="#{'/WEB-INF/dept-emp-flow.xml#dept-emp-flow'}"
 to="#{pageFlowScope.UiStateBean.currentTF}" type="action"/>
 </af:commandMenuItem>
 <af:commandMenuItem text="All employees" id="cmi2">
 <af:setPropertyListener
 from="#{'/WEB-INF/all-emp-flow.xml#all-emp-flow'}"
 to="#{pageFlowScope.UiStateBean.currentTF}" type="action"/>
 </af:commandMenuItem>
 </af:menu>
 </af:menuBar>
...

Chapter 5 ■ presentation LogiC

135

In this way, you can assign the paths to the different task flows to the UI state bean
when the user selects each menu item.

Refreshing the Master Page
The final step is to ask the region to redraw itself whenever the value of the UI state
changes. The region UI component doesn’t know that you’ve changed the value of the
UI state bean, so you have to tell it to refresh. This is done by setting the PartialTriggers
property on the region.

When you click the gearwheel icon to the right of that property and select Edit, the
Edit Property: PartialTriggers dialog appears as shown in Figure 5-16.

In this dialog, you specify the components that should trigger a refresh of the region.
In the left side, you navigate to your menu item, select each one, and click the ➤ button to
shuffle it to the right. Any action on an item in the Selected box to the right will cause the
component to refresh as the user would expect from a modern web application.

When you run the master page, every time you click a menu item, the set property
listener will store a new value in the UI state bean and tell the region to refresh. The
region will refresh, asking the page switcher bean for the path to the task flow to be
displayed, and the page switcher bean will read this from the UI state bean.

Figure 5-16. The Edit Property: PartialTriggers dialog

Chapter 5 ■ presentation LogiC

136

Conclusion
You have now seen how you can add presentation logic to your application to supplement
the logic in the business layer to make your application do anything you need. But as
always in programming, sometimes your code doesn’t run correctly in the first attempt.
In the next chapter, we’ll discuss how you can use ADF’s logging and debugging features
to fix any problems with your code.

137© Sten Vesterli 2017
S. Vesterli, Oracle ADF Survival Guide, DOI 10.1007/978-1-4842-2820-3_6

CHAPTER 6

Logging and Debugging

You’ve seen how to build an ADF application with powerful declarative features, and how
to add your own business logic to both the business component and the user interface
layer. However, sometimes your application doesn’t work quite the way you expect it to.
This is where logging and debugging comes into play.

Using ADF Logger
The first feature that helps you understand how your application works is logging. Java
has basic logging features built in, and there are also several logging Java frameworks like
Log4J. In an ADF application, you should use the ADF-specific ADFLogger class for your
logging. The ADF Logger uses the standard Java logging API.

 ■ Caution Don’t ever use System.out.println() in production code, even if half the
Java examples on the Internet do. You can’t turn off this kind of logging, so you’ll get an
unmanageable amount of logging.

The ADF Logger has several benefits over standard Java logging, especially the fact
that all log messages caused by the same ADF event are given the same Execution Context
ID (ECID) so you can easily find all the log entries that are related to a specific message.
You can also change log levels while the application is running, and even set a higher log
level for a specific user of your application.

Adding Logging to Your Classes
All your Java classes should contain an instance of ADFLogger. In your team, decide on
what you call it so that everyone can easily add new log statements everywhere in the
knowledge that the logger exists. I recommend simply calling this instance logger.

Chapter 6 ■ LoggIng anD DebuggIng

138

You create it using the createADFLogger() factory method in the ADFLogger class,
passing in the name of the current class, as shown in Listing 6-1.

Listing 6-1. Creating an ADFLogger Instance

package com.vesterli.hrdemo.deptemp.model.view;

import ...

public class EmployeesVORowImpl extends ViewRowImpl implements
EmployeesVORow {
 private ADFLogger logger =
 ADFLogger.createADFLogger(EmployeesVORowImpl.class);
 ...
}

If you don’t provide the name of the current class, you will get a lot of log messages
but will have no way to find out where the originated. Therefore, always provide a class
name.

When you have a logger object in your class, you can add log statements to your
code using the various methods offered by the ADFLogger class. All log statements have a
log level, and it is important that your team makes a choice about how to use them. The
following table shows my recommendation.

Log level Used for

SEVERE Critical errors that prevent the application from continuing. Your
server administrator should set up monitoring of the ADF log files so
that he and/or you get an alert if this happens.

WARNING Warnings that indicate something wrong with the application. Often
used to indicate misconfigurations, unexpected database errors,
error messages, or no response from external systems.

INFO Information for business users about what the application is doing.

CONFIG Initialization of classes. Reading initial configuration from database
or files.

FINE Coarse-grained debug logging. Use FINE to log when methods are
entered and/or exited (i.e., not more than twice in a method).

FINER Medium-grained debug logging. Use FINER for more detailed
logging inside methods.

FINEST Fine-grained debug logging. Logging in loops should use FINEST.

Chapter 6 ■ LoggIng anD DebuggIng

139

In Listing 6-2, you can see some examples of ADF log statements.

Listing 6-2. Examples of ADF Logging

package com.vesterli.hrdemo.deptemp.view.beans;

import ...

public class EmpPage {
 ADFLogger logger = ADFLogger.createADFLogger(EmpPage.class);
...
 public String MultiRaise() {
 logger.fine("Entering MultiRaise()");
 RowKeySet selectedEmps = getEmpTab().getSelectedRowKeys();
 Iterator selIter = selectedEmps.iterator();

 logger.finer("Get iterator for all VO records");
 BindingContainer bc =
 BindingContext.getCurrent().getCurrentBindingsEntry();
 DCBindingContainer dcb =(DCBindingContainer)bc;
 DCIteratorBinding empIter =
 dcb.findIteratorBinding("EmployeesInDeptVOIterator");
 RowSetIterator rsi = empIter.getRowSetIterator();

 logger.finer("Loop over selected employees, give raise");
 Row currEmp = null;
 String oldSalString;
 BigDecimal oldSal;
 BigDecimal newSal;
 while (selIter.hasNext()) {
 Key key = (Key)((List)selIter.next()).get(0);
 currEmp = rsi.getRow(key);
 logger.finest("Working on " + currEmp.getAttribute("EmployeeId"));
 oldSalString = (String)currEmp.getAttribute("SalaryString");
 oldSal = new BigDecimal(oldSalString);
 logger.finest("Old sal is " + oldSal);
 newSal = oldSal.multiply(new BigDecimal(1.05))
 .setScale(0, BigDecimal.ROUND_DOWN);
 currEmp.setAttribute("SalaryString", newSal.toString());
 logger.finest("New sal is " + currEmp.getAttribute("SalaryString"));
 }

 logger.finer("Done increasing salaries, refreshing UI");
 AdfFacesContext.getCurrentInstance().addPartialTarget(empTab);
 return null;
 }
...
}

Chapter 6 ■ LoggIng anD DebuggIng

140

There is a single logger.fine() statement at the start of the method and a number
of logger.finer() statements providing information through the flow of the method.
Inside the loop in the second half of the code, logger.finest() is used.

Configuring Logging
The reason you want to use different log levels is so that you can apply relevant filters to
your log. You can set the log threshold for an individual class or a Java package, and only
the log statements that are at or above the threshold actually get written in the log. In this
way, extra log statements are for all practical purposes “free,” because the cost at runtime
for a log statement below the threshold is so low.

By default, you will only see logs that are of level WARNING or higher. That is
because your ADFLogger instances inherit their configuration from the Root Logger,
which is set to WARNING. To see your own logs at different levels, you will need to add
loggers named after your classes and packages and define their log levels.

This is done in the logging.xml file, but there is no need to edit this file directly.
For the WebLogic server built into JDeveloper, you can click Actions and then Configure
Oracle Diagnostic Logging from the Log window, as shown in Figure 6-1.

This brings up the logging.xml file in JDeveloper. Because JDeveloper recognizes
this file as a special configuration file, it provides an Overview tab where you can easily
change log configuration. If you want to look at the raw configuration file, you can choose
the Source tab at the bottom of the logging.xml window.

Figure 6-1. Configuring ADF logging in JDeveloper

Chapter 6 ■ LoggIng anD DebuggIng

141

ADF has both persistent loggers that remain between invocations of your program
and transient loggers created by ADF whenever an instance of a class with a log statement
is instantiated. If you open the logging.xml window while an application is running in the
built-in WebLogic server, you will see a lot of loggers. To get a better overview, check the
Hide Transient Loggers check box, as shown in Figure 6-2.

The loggers you add yourself should be Persistent loggers. To add these, click the
green plus sign and choose Add Persistent Logger. In the dialog, enter a logger name and
choose a log threshold.

•	 If your logger name is a package name, log statements at or
above the threshold for every class in that package will be written
to the log.

•	 If your logger name is the name of a specific class, only log
statements at or above the threshold from that specific class are
written to the log.

All the loggers are automatically arranged in a hierarchy below the Root Logger, and
each logger can have its own log level. This gives you excellent control over what gets
written to the log file.

Figure 6-2. The logging.xml Overview tab

Chapter 6 ■ LoggIng anD DebuggIng

142

For example, in Figure 6-2, I have specified

•	 A com.vesterli logger that allows FINE logging for every class
where logging is not explicitly set by a lower-level logger. All the
Java code produced by your organization should be under a
similar base Java package.

•	 A com.vesterli.hrdemo logger that allows FINER logging for
every class that is part of my HRDemo application. By using an
application base package like this, you can control the logging for
the entire application with one logger.

•	 A com.vesterli.hrdemo.foundation logger that shows only
INFO logging for the classes in this package. You often don’t want
very detailed logging from your foundation classes once they are
tested and used in your application.

Reading Logs
The log statements above the relevant threshold get written in the WebLogic log file and/
or shown in the console.

Reading Logs in JDeveloper
As you run your application in the built-in WebLogic server in JDeveloper, you will see
log entries appearing in the Log window. ADF doesn’t distinguish between your log
statements and the log that ADF itself produces. The default configuration of JDeveloper
sets a fairly high threshold for the ADF packages, so you should not see a lot of ADF
internal log information unless you add or reconfigure loggers.

 ■ Note even when you build your page by dragging and dropping components onto the
page, you might get several aDF warnings. In effect, JDeveloper is complaining about the
code it built itself. these warnings can safely be ignored. It is normally not worth the time to
track down and fix the root cause.

Do not deselect the option called Verbose Server Log on the Action menu. This cuts
down on logging output but doesn’t discriminate between your logging and internal ADF
logging, so you won’t see any of your own logging either.

If you have a large log, you can use the Oracle Diagnostic Log Analyzer (ODLA) to
examine it. To start this, you choose Analyze Log ➤ Current in Console from the Action
button menu. The ODLA opens as shown in Figure 6-3.

Chapter 6 ■ LoggIng anD DebuggIng

143

At the top of the ODLA window, you can enter search criteria and execute a search.
The most common search is to choose By Log Message in the radio group at the top. In the
bottom row of search criteria, you will normally choose Message in the first drop-down
and Contains in the second and then enter a search string.

In the results section in the lower part of the ODLA window, note the little triangle
in the top right corner of the left-hand overview box. This allows you to select what
attributes you want to see in the overview. If you choose Related, as shown in Figure 6-3,
you get a column with a little icon.

This is a very powerful feature. If you click the little icon, you get a few options
including Related by Request. If you choose this, you get every log message that was
triggered by the same server roundtrip. This allows you to see everything that happened
in all classes as result of the same user interaction (typically a mouse click or a keypress).
Having the messages that came before the problem can often be very helpful, especially
when all the irrelevant messages from other events are filtered out.

Figure 6-3. The Oracle Diagnostic Log Analyzer

Chapter 6 ■ LoggIng anD DebuggIng

144

Reading Logs in Other Tools
When you deploy your application to an external WebLogic server for testing or
production, the log configuration is not included. You configure the logging on each
WebLogic server separately. This means that even if you have configured a lot of logging
in the built-in WebLogic server in JDeveloper, you will by default not see any logging at all
when you deploy the application to another WebLogic server.

On stand-alone WebLogic servers, you configure logging in Enterprise Manager.
To do this, find the ADF application under Application Deployments and choose
Application Deployment ➤ ADF ➤ ADF Log Configuration.

The logs can also be seen in Enterprise Manager, allowing your WebLogic
administrator to see how your application is doing. Possibly, developers can even instruct
operations personnel what they might do to alleviate any problems revealed by the logs.
This could be the case if an ADF application is unable to contact the database or an
external service.

When you view logs in Enterprise Manager Grid Control, you see all the logs created
on that specific managed server. You will likely have to filter the log to track down an
issue. Similar to the way the Oracle Diagnostic Log Analyzer works in JDeveloper, you
can search for a log message that contains a specific string and then click View Related
Messages and find the messages from the same server roundtrip by choosing by ECID
(Execution Context ID).

Oracle has also announced a very interesting cloud service called Oracle
Management Cloud. This cloud service can receive log files from all types of applications
and present a comprehensive overview with visualizations and drill-down capability. One
of the log inputs that Oracle Management Cloud will ingest is logs from ADF applications,
both from ADF applications running on a WebLogic server in your datacenter and from
ADF applications deployed to the Oracle Java Cloud Service. It was not released at the
time of writing, but go to cloud.oracle.com and see if it is available and whether it would
fit your needs.

Finally, you can read the raw log files yourself or configure some tool to monitor
and present them. The ADF log entries are written to the WebLogic server log for the
managed server you deploy your application to. If you deploy to a managed server called
MyManagedServer, you find your ADF entries in the MyManagedServer-diagnostic.log
file. Your server administrator can help you find this file, and can also use Enterprise
Manager to move it to another location.

 ■ Note If you don’t have access to the server file system, ask your server administrator if
the log files from test servers could be placed on a shared network drive.

If you want to look at the log files from the WebLogic server built into JDeveloper,
you find these in the domain home directory. On Windows, this will be something like
C:\Users\<your_user>\AppData\Roaming\<systemX.Y.Z>\DefaultDomain\servers\
DefaultServer\logs\DefaultServer-diagnostic.log.

Chapter 6 ■ LoggIng anD DebuggIng

145

Normal Debugging
JDeveloper is a complete Integrated Development Environment (IDE), so it, of course,
contains all the debugging features you expect.

Setting a Breakpoint
To debug your Java code, you open the relevant class and click in the left margin to set
a breakpoint. It is marked with a red dot and a red background behind the line with the
breakpoint, as shown in Figure 6-4.

It is also marked in the right-hand margin with a small pink box, and if you are
displaying the mini-map, the line with the breakpoint shows up as a pink line there as
well. You can click in the mini-map or in the right margin to jump to a breakpoint (or any
other point in the code).

 ■ Note the Mini-map to the right in source view gives you a quick overview of large
classes. You can right-click and set various settings and hide the map. to display it again,
press alt+Shift+period or choose Source ➤ Show Mini-Map from the right-click context
menu in the source.

If you hover with the mouse over the red breakpoint dot in the left margin, you get a
pop-up dialog, as shown in Figure 6-4. In this dialog, you can choose, for example, to stop
only when you reach the breakpoint the fifth time or stop based on some condition. If you
right-click the breakpoint dot and choose Edit Breakpoint, you get even more options to
customize the breakpoint.

Figure 6-4. Setting a breakpoint

Chapter 6 ■ LoggIng anD DebuggIng

146

Running in Debug Mode
Once you have set the breakpoints you need, you right-click a runnable element and
choose Debug (instead of the normal Run).

For task flows in subsystems, you normally run a test page containing the task flow
you want to debug. To test the Java classes in your application, you will normally have
unit test classes that invoke them, so you can just run these unit tests to invoke and debug
your classes.

If the built-in WebLogic server is already started in normal (Run) mode, you will be
prompted if you want to restart the server. Running in Debug mode is a bit slower and
requires you to restart WebLogic, so JDeveloper protects you from accidentally changing
between Run and Debug modes.

Stepping Through Code
When you reach a breakpoint in your code, execution stops and JDeveloper highlights the
current line in the code. If you break before anything is returned to the web browser, the
browser is just blank, showing the indication that a response has not been received yet.

With execution stopped, you have several options:

•	 Step over (F8)

•	 Step into (F7)

•	 Step out (Shift+F7)

•	 Step to end of method

•	 Run to cursor (F4)

•	 Resume (F9)

Some of these options are available from the toolbar above the source view, and all of
them can be found on the Source menu.

The normal approach is to use Step Over to execute the code in your class line by
line. JDeveloper shows execution times, some variables, and some control flow in the far
left margin, as shown in Figure 6-5.

Chapter 6 ■ LoggIng anD DebuggIng

147

By default, the far left margin (to the left of the line numbers in the regular margin)
is rather narrow, but you can grab the edge of it to see more of the debug information, as
shown in the preceding figure.

Step Into will step into the class that contains the method invoked by the currently
open class. If the current line of code invokes methods from multiple other classes, you
are prompted to select which class you want to step into. This is useful if you have a
nested call hierarchy in your own code, but will sometimes just take you into the ADF
source code from Oracle. Unless you have requested and installed the source code as
explained later in this chapter, attempting to step into the ADF code will just give you an
error about missing source code.

You can also just click to place the cursor further down in the code and press F4 to
Run to Cursor. When you have gathered the information you need, you press Resume (F9)
to allow JDeveloper to continue the execution.

Gathering Information
When you start the built-in WebLogic server in debug mode, JDeveloper automatically
opens several new tabs for you in the Log window:

•	 Data

•	 Smart Data

•	 Watches

•	 EL Evaluator

•	 ADF Data

•	 Breakpoints

Figure 6-5. Debugging code in JDeveloper

Chapter 6 ■ LoggIng anD DebuggIng

148

The Data tab shows information about all the objects currently memory in memory,
while the Smart Data tab makes a guess at what is most relevant to you at this point in the
code and only shows you this.

If you are interested in something that is not in either of these windows, you can add
a Watch on the Watches tab. You can either type in an expression or select something in
the code view, right-click, and choose Watch.

The EL Evaluator allows you to evaluate the value of an expression language expression,
which is especially useful when debugging task flows as described in the following.

The ADF Data tab shows you everything in the ADF memory scopes
(pageFlowScope, requestScope, etc.), and the Breakpoints tab gives an overview of all
breakpoints in your code. You can close the tabs you don’t need and reopen these and
other debug tabs from the Debugger submenu of the JDeveloper Window menu.

In addition, you can place the cursor on any variable and press Ctrl+I (or right-click and
choose Inspect) to open an independent pop-up Inspector window showing that variable.

Debugging Task Flows
Debugging code works when you can figure out which code is causing the problem.
But sometimes, it can be hard to find the code that is running, or the execution flow
through the application takes a different path from what you expect. Fortunately,
JDeveloper offers you the ability to debug at a higher level than code: in the task flows.

To debug a task flow, you open it in the Diagram view and right-click a task flow
activity. It gets a little red dot, as shown in Figure 6-6.

Figure 6-6. Setting a breakpoint in a task flow

Chapter 6 ■ LoggIng anD DebuggIng

149

When you run the application, execution stops at the breakpoint in the task flow.
In JDeveloper, focus is on the task flow diagram with the active breakpoint, and
JDeveloper is often moved to the foreground of your development machine (in front of
the active browser window).

When you have stopped execution in a task flow, there isn’t really any code to step
through, but you can examine the state of the application using expression language (EL).
You do this on the Expression Language tab in the Log window, as shown in Figure 6-7.

From this window, you can check values in managed beans and ADF internal values
exposed as EL. Examples:

•	 #{pageFlowScope.myBean.myAttribute} will give you the value
of the attribute myAttribute in the bean myBean in page flow
scope. Note that if you choose the wrong scope, the expression
language will just evaluate to null.

•	 #{securityContext.userName} will give you the name of the
currently logged-in user. If the user has not logged in, this value
will evaluate to anonymous.

•	 #{facesContext.viewRoot.locale.language} will give you the
current language the application is running in (from the browser).
This can be useful to debug translation or localization errors.

Debugging into ADF Libraries
As you saw in Chapter 2, an ADF application normally consists of several subsystems
and a master application. Each subsystem is deployed as an ADF library, and the master
application uses these libraries. But how do you debug a complete application when the
bug you are chasing does not occur when testing the individual task flow? The solution is
simple: you include the source code with the subsystems’ ADF library.

Figure 6-7. Evaluating Expression Language when debugging task flow

http://dx.doi.org/10.1007/978-1-4842-2820-3_2

Chapter 6 ■ LoggIng anD DebuggIng

150

Deploying Source Code
To allow the debugger to break in subsystem code and to display the relevant source
code, it needs access to the source code. By default, an ADF library contains only the
compiled Java class files (the bytecode), but not the source files. That is fine for deploying
a production application where you don’t want to bloat your libraries with source code
the end user doesn’t need. In some cases, your ADF application might even be used by an
end customer that you don’t want poking around in your source code.

But for debugging, you need to deploy the source code from your subsystems. To
do this, you create a separate deployment profile that will package your source code
into a JAR file. Choose the normal File ➤ New ➤ General ➤ Deployment Profiles and
then choose JAR File (instead of the normal ADF Library JAR File). You should decide on
standard naming for your source JAR files—I recommend prefixing them with source, for
example, sourceDeptEmp.

In the Edit JAR Deployment Profile Properties dialog, you need to open File Groups
➤ Project Output ➤ Contributors and change the default content that JDeveloper
suggests. You do not need Project Output Directory and Project Dependencies, but you
do need Project Source Path, as shown in Figure 6-8.

Breaking in Library Code
When you have created source code JAR files for the relevant subsystems, you add them
to your master application view project like any other JAR: Project Properties ➤ Libraries
and Classpath ➤ Add JAR/Directory.

Figure 6-8. Setting properties for a source JAR deployment

Chapter 6 ■ LoggIng anD DebuggIng

151

To see the source JAR file and set a breakpoint in it, you need to reconfigure the
Applications window to show included libraries. This is done from the Navigator Display
Options button in the top right corner of the Applications window. Select Show Libraries,
as shown in Figure 6-9.

Now all libraries are shown in the Applications window. Find the source JAR file for
the subsystem that you want to break inside, open it and double-click the Java file to open
the source file. You can set breakpoints in these subsystem files, as shown in Figure 6-10,
and when you run the master application, execution stops at the point you chose in the
relevant subsystem.

Figure 6-9. Configuring the Applications window to show libraries

Chapter 6 ■ LoggIng anD DebuggIng

152

Adding the ADF Source Code
When you are debugging ADF applications, you will often see the dialog box in Figure 6-11.

This dialog means that you wanted to continue single-line debugging, but
JDeveloper couldn’t find the source file containing the next piece of code to be executed.
This can happen if execution continues into some of your own classes and you have
not created a source code JAR as described in the preceding. But most often, it happens
because execution continues into the large ADF code base delivered by Oracle. And by
default, you don’t have the Oracle ADF source code.

Figure 6-10. Placing a breakpoint in subsystem source code from the master application

Figure 6-11. Unable to find source file

Chapter 6 ■ LoggIng anD DebuggIng

153

Getting the ADF Source Code
But if you have a valid support contract with Oracle, you can get the source code.
The procedure is described in Doc ID 971256.1 on My Oracle Support, and the main steps
are as follows:

 1. You open a Service Request with My Oracle Support and
ask for the ADF source code for the versions you need. You
must supply the name, e-mail, and fax number (yes, really)
of a person authorized to sign the Source Code Agreement
(SCA) with Oracle. If you are a developer, this might be your
manager.

 2. Oracle sends you the SCA.

 3. An authorized person from your organization signs and
returns the SCA.

 4. The SR is updated with a URL to the relevant source code ZIP
and a password to open the ZIP file.

 5. You download the ZIP file (it normally has a name like
adf_vvvv_nnnn_source.zip, where vvvv is version number
and nnnn is build).

Adding the ADF Source Code to JDeveloper
Once you have the ADF source code from Oracle, you normally create a user library for
it. To do this, choose Tools ➤ Manage Libraries to bring up the Manage Libraries dialog.
In this dialog, click New to add a new library for the ADF source. Provide a name and add
the ZIP file as a new Source Path entry. Don’t select the Deployed by Default check box.

Adding the ADF Source Code to a Project
When you have defined the ADF source user library, you can add it to each relevant
project under Project Properties ➤ Libraries and Classpaths ➤ Add Library. Your ADF
source library should appear under the Users node.

With the ADF source code part of your project, you can debug into ADF itself. You
can also follow the execution path from your own application into the internal ADF
classes if you need more information to help you debug a tricky issue. If you are curious
about what ADF is doing internally, you can even set breakpoints in Oracle’s code.

Tips and Tricks
When you have a problem with your ADF application, first run the ADF Model Tester. This
will tell if you the problem is in the business components layer or the user interface layer.

Chapter 6 ■ LoggIng anD DebuggIng

154

If the Model Doesn’t Run
Some types of errors mean that the model tester won’t start at all. In this case, JDeveloper
can’t really offer any good advice, and all you see is in the Log window is something like
Listing 6-3.

Listing 6-3. ADF Model Tester Incomplete Start

C:\Java\jdk1.8.0_102\bin\javaw.exe -server -classpath ...
Apr 17, 2017 5:31:10 PM oracle.security.jps.JpsStartup start
INFO: Jps initializing.
Apr 17, 2017 5:31:11 PM oracle.security.jps.JpsStartup start
INFO: Jps started.
Apr 17, 2017 5:31:20 PM oracle.jbo.jbotester.MainFrame main
INFO: BC4J Tester started.

If you don’t see jdev tester server connecting on port... the model tester
didn’t start correctly. In this case, there is a problem with some of the code in your
business components, and you need to check the source files for all your business
components.

You need to open the XML file (on the Source tab for the business component) and
any Java classes that you generated. A file with no problems has a green square at the top
of the right margin and no other indications in the right margin, as shown in Figure 6-12.

Figure 6-12. A business component file without problems

Chapter 6 ■ LoggIng anD DebuggIng

155

If there is a problem with a file, the square at the top right is orange or red, and there will
be orange and/or red lines in various places in the right margin, as shown in Figure 6-13.

Each problem is highlighted in the code with an orange or red underline, and you
can point to it to get JDeveloper to tell you what it thinks the problem is.

If the Page Is Empty
If your web page shows up empty, and the JDeveloper log doesn’t tell you what is wrong,
you need to examine the source file of the page. Look for errors and warnings marked
with red and/or yellow bars in the right margin and underlines in the code.

If this doesn’t help you, you can fall back to the time-proven way of debugging:
commenting out code. Since the source of your page is XML, you need to use XML
comment syntax of <!-- -->.

Start by placing a start comment near the very top of the page and comment out
everything that contains expression language (bindings, action listeners, etc.). Then drop
in some simple component from the Components window, as shown in Listing 6-4.

Listing 6-4. Commenting Out Parts of a Page

<?xml version='1.0' encoding='UTF-8'?>
<ui:composition xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:f="http://java.sun.com/jsf/core">
 <af:pageTemplate viewId="/HrDemoPageFragmentTemplate.jsf" id="pt1">
 <f:facet name="content">
 <af:panelFormLayout id="pfl1">

Figure 6-13. A business component file with problems

Chapter 6 ■ LoggIng anD DebuggIng

156

 <af:button text="button 1" id="b1"/>
 <!--
 <af:inputText value="#{bindings.DepartmentId.inputValue}"
 label="#{bindings.DepartmentId.hints.label}"
 required="#{bindings.DepartmentId.hints.mandatory}"
 columns="#{bindings.DepartmentId.hints.displayWidth}"
 maximumLength="#{bindings.DepartmentId.hints.precision}"
 shortDesc="#{bindings.DepartmentId.hints.tooltip}" id="it1">
 <f:validator binding="#{bindings.DepartmentId.validator}"/>
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.DepartmentId.format}"/>
 </af:inputText>
...
 -->
 </af:panelFormLayout>
 </f:facet>
 </af:pageTemplate>
</ui:composition>

Now, when you run your page, you should see only the simple component.
Then move the comment start and end marks to include more and more of your UI
components until you find the one that causes the problem.

Conclusion
You have seen how to add proper instrumentation to your ADF code and how to debug
enterprise ADF applications. The last thing you need to know is how to implement a good
workflow for effective enterprise ADF development.

157© Sten Vesterli 2017
S. Vesterli, Oracle ADF Survival Guide, DOI 10.1007/978-1-4842-2820-3_7

CHAPTER 7

Your ADF Workflow

JDeveloper is an enterprise-level tool that supports and integrates with many of the tools
you need to support an enterprise application development process.

Work Process
Because ADF provides for so many ways of implementing common functionality once
and then sharing it across one or more applications, it is important that you set up your
project in the right way from the beginning.

Development work should happen on development workstations containing
JDeveloper and preferably a copy of the database. Modern workstations are powerful
enough that you can run JDeveloper, WebLogic, and a database at the same time, and
this configuration gives you much more flexibility when you are faced with the inevitable
changes to the database.

You deliver finished code to the central code repository, and a build process
(preferably automated) produces a version of the application and deploys it to an
integration environment.

Design Work
The first step is to design the application together with actual end users. Make sure you
have all kinds of users represented in the design group. It is a common problem that
applications are developed by expert users—this typically leads to overcomplicated
screens that are unintelligible by regular and novice users.

In addition to users, you need three different technical skills in order to produce
user-friendly applications quickly and efficiently with ADF:

•	 A User Experience (UX) designer

•	 An experienced Oracle ADF developer

•	 A database designer

Chapter 7 ■ Your aDF WorkFloW

158

The user experience designer facilitates workshops with the users to design screens
and navigation that meet their needs while ensuring consistency and that UX best practice
is being implemented. Oracle has researched user experience extensively, and has made
all its best practices freely available. The UX designer on your team should familiarize
herself with the Oracle Applications User Experience design patterns (www.oracle.com/
webfolder/ux/applications/DPG/index.html) and read the free Oracle eBook for
inspiration. If your ADF application is intended to extend Oracle’s Cloud Applications,
you should build your application in accordance with the Simplified User Experience
guidelines so it looks like the applications in the Oracle Cloud Applications suite.

When the first draft of the user experience (screens and navigation) has been
produced, the UX designer discusses it with the lead ADF developer. The developer can
contribute to the design in two ways:

•	 By suggesting specialized ADF components that might provide
additional functionality or convenience at little cost

•	 By suggesting alternative ways to meet a specific requirement if
the suggested design will be hard to implement in standard ADF

The UX designer then makes any necessary changes to incorporate the input from
the ADF developer and finalizes the design with the users.

When the design is done, the database designer works from the design to identity all
data entities, along with their relations and attributes. At this stage, it might be necessary
to go back to the users to clarify relationships, attributes, and valid values before the
database is built.

Application Architecture
As the application specifications start to crystallize, you can start establishing the
application architecture.

If this is the first ADF application you are building, you should start with a modular
ADF architecture as described in Chapter 2, consisting of a foundation, several
subsystems, and a master application.

If you already know that you will be building many ADF applications, and you have
some experienced ADF developers on your team, you can also establish an enterprise
ADF architecture from the beginning. This more complex architecture is also described
in Chapter 2 and involves establishing both an enterprise foundation layer for all
applications as well as individual application foundation layers for each application.

At this time, you need to decide on the number of subsystems, including names,
scope, and Java package name for each.

Initial Development
Once the application architecture is in place, you can start the initial development. If you
are running your project in accordance with an agile methodology, you might consider
this the first sprint.

http://www.oracle.com/webfolder/ux/applications/DPG/index.html
http://www.oracle.com/webfolder/ux/applications/DPG/index.html
http://dx.doi.org/10.1007/978-1-4842-2820-3_2
http://dx.doi.org/10.1007/978-1-4842-2820-3_2

Chapter 7 ■ Your aDF WorkFloW

159

Development Standards
You need some place to document your development standards. To make it easy
to update and track changes, this should preferably be a Wiki or similar, not a word
processing document.

Your development standards must include Java package names for the foundation,
all subsystems, and the master application. It should also include Java coding guidelines
(fight the tabs-vs.-spaces war now and be done with it) and naming standards for ADF
objects and Java classes.

 ■ Tip For inspiration to your aDF naming standards, you can look at the ADF Naming
and Project Layout Guidelines developed by the aDF enterprise Methodology Group
(www.oracle.com/technetwork/developer-tools/adf/learnmore/adf-naming-layout-
guidelines-v2-00-1904828.pdf).

JDeveloper has a long list of preferences you can set. Make sure you set at least the
following:

•	 Environment ➤ Encoding (set to UTF8. Some JDeveloper versions
on some platforms have another default)

•	 ADF Business Components ➤ Base Classes (set to your own BC
base classes)

•	 ADF Business Components ➤ Packages (provide different
subpackages for entities, associations, view objects, view links,
and application modules in order to separate them in your code
and in JDeveloper)

•	 Code Editor ➤ Code Style (duplicate a profile and adapt to your
needs)

Create All JDeveloper Workspaces
With the standards in place, your lead developer or architect should create all the
JDeveloper workspaces of your application, including the projects inside them. These
workspaces should be created in a new directory not used for anything other than
ADF workspaces and ADF libraries. We will refer to this directory as your $ADF_ROOT
directory (e.g., C:\JDeveloper\hrdemo).

In a modular ADF architecture, this means creating

•	 The foundation workspace with projects for common model,
common UI, common utility code, and business component
base classes

•	 All the subsystem workspaces, each with a model and a
view/controller project

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adf-naming-layout-guidelines-v2-00-1904828.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adf-naming-layout-guidelines-v2-00-1904828.pdf

Chapter 7 ■ Your aDF WorkFloW

160

•	 The master application workspace

•	 A directory to hold your ADF libraries

Create the Initial Foundation
Inside the foundation workspace, you should now create the elements that the entire
application depends on:

•	 Business component base classes

•	 Page template

•	 Page fragment template

•	 Task flow template

•	 Application skin

Your business component base classes can be empty for now, but you need to create
them and set up JDeveloper to use these base classes whenever you create ADF business
components.

 ■ Note JDeveloper doesn’t offer an easy way to move configurations from one
JDeveloper instance to another, so there is no way to distribute a correct JDeveloper setup
to your entire team, short of giving everybody a virtual machine with JDeveloper correctly
installed.

Similarly, your templates and skin can be empty. Refer to Chapter 2 for more details
on these elements.

When you have created this initial code, create ADF libraries from the common
UI and business component base class projects. Place these ADF library JAR files in
the common ADF library directories in your ADF project directory. Then place all your
workspaces under version control and the ADF library directory under version control as
described in the section “Source Control” later in this chapter.

Create the Database
In parallel with the work of creating JDeveloper workspaces and the initial foundation,
your database design team can create the initial data model for your application.

A successful Oracle ADF project is based on a well-designed database. Database
design is outside the scope of this book.

http://dx.doi.org/10.1007/978-1-4842-2820-3_2

Chapter 7 ■ Your aDF WorkFloW

161

 ■ Tip It can be hard to ensure versioning of database objects like tables. look at a
tool like Flyway (https://flywaydb.org/) for one solution to handle the changes to the
database that are inevitable in any project.

If you want to use JDeveloper to develop your database, look into the JDeveloper
feature called offline tables. These are defined in JDeveloper and can be compared to an
actual database, and JDeveloper can automatically create the necessary scripts to make
the database look like the offline definitions.

Initial Application
The purpose of the initial application is twofold: you want to make sure that all the parts
work together, and fix any issues before you start building in earnest. And you want to
demonstrate to your users what the application is going to look like. In agile development,
it is a basic tenet to be able to demonstrate some new functionality at the end of every
two- or three-week sprint. Even if you are not implementing any other part of the agile
methodology, it is a good idea to keep your users informed of progress by showing them
regular demonstrations of the application.

Once the first version of the database is ready, you can create all the entity objects
in the common model project using the Business Components from Tables wizard. Then
create an ADF library from the common model project.

Then you build a simple subsystem implementing one screen from the application
design. If your application contains screens for maintaining reference data, one of these
screens might be a good candidate to implement in the initial application. The subsystem
will involve a view object based on entity objects from the common model ADF library,
and a task flow with a single page fragment. Deploy the finished subsystem as an ADF
library.

In parallel with building the subsystem, your team should also build the master
application with a menu and task flow switching logic as described in Chapter 5. If your
application is going to implement ADF security, apply security to the master application
now, using sample users for the demo.

 ■ Note Don’t wait until the end of the project to implement security. If your application
involves getting your Weblogic application server integrated with another identity provider
like Microsoft active Directory, you want to start this process early in the project so you have
time to fix any issues that might occur.

Add the subsystem ADF library to the master application as described in Chapter
5 and test that you can invoke the task flow from the subsystem, and that you can make
changes to data on the page fragment and store this changed data in the database.

Then show this basic application to your users. This gives them a first idea of
what the finished ADF application will look like and proves to them that the project is
progressing.

https://flywaydb.org/
http://dx.doi.org/10.1007/978-1-4842-2820-3_5
http://dx.doi.org/10.1007/978-1-4842-2820-3_5

Chapter 7 ■ Your aDF WorkFloW

162

Constructing the Application
The initial application has proven that the entire technology stack works, or might have
identified areas you need to work on (e.g., security integration). To build the rest of the
application, you implement all the designed screens and other functionality in the subsystems.

If you are using an agile development approach, you choose a number of user stories
for each sprint and continually deploy new ADF libraries from your subsystems and
integrate them into the master application. If you are running your project in accordance
with a traditional waterfall model, make sure to place some milestones in your plan
where you integrate all of your work in the master application so you can demonstrate the
current state of the application to the end users and other stakeholders.

Handling Database Changes
During development, there will always be changes to the database. There will be small
changes to attributes within existing tables (new or modified columns), and maybe also
larger, structural changes that involve new tables and changes to relations between tables.

When you need to make a small change to a table in the database, write a script to
make the change in your local database. Then change the corresponding entity object
in the common model project in the foundation workspace. You can right-click the
entity object and select Synchronize with Database to ask JDeveloper to help you. The
Synchronize with Database dialog appears as shown in Figure 7-1.

Figure 7-1. Synchronizing database changes with an ADF entity object

Chapter 7 ■ Your aDF WorkFloW

163

You need to click Synchronize or Synchronize All to ask JDeveloper to actually change
your entity object—if you just click OK, no changes are made. After you confirm you want
the change, JDeveloper confirms which changes were successful.

Note that attribute changes in the entity object are not automatically applied to the
view objects using that entity object, and there is no corresponding “synchronize” feature
for view objects. You must handle any view object changes manually. You can right-click
the entity object and choose Find Usages to find the view objects that depend on that
entity object.

Handling Other Foundation Changes
Changes to business component base classes should not break existing code. Similarly,
changes to page and task flow templates might affect the visual appearance of the page, but
should not break the application (unless you accidentally delete a facet used on some pages).

However, you should always perform a regression test to verify that your application
still works. It is a good idea to automate application testing through the user interface.

Source Control
You need to keep your ADF application source code and libraries under version control.
If your organization has worked with a tool like Oracle Forms that keeps all source
organized in a few large files, you might have gotten by without proper version control
until now. Once you start with ADF that uses a lot of small, but interdependent files, you
absolutely need to implement source control.

The most popular version control software today is Git. Figure 7-2 shows a
comparison of various version control tools over time from Google Trends.

Figure 7-2. Version Control software popularity

Git is a free, open source tool that can be downloaded from https://git-scm.com/
 and run locally, or you can use a hosted instance like GitHub (https://github.com/).
The Oracle Developer Cloud Service (DCS) described later in this chapter also uses
Git. However, JDeveloper also has support for Apache Subversion built in, and you can
download JDeveloper extensions for CVS, Perforce and others from the JDeveloper
extension center at http://apex.oracle.com/pls/apex/f?p=updatecenter:uc.

https://git-scm.com/
https://git-scm.com/
https://github.com/
http://apex.oracle.com/pls/apex/f?p=updatecenter:uc

Chapter 7 ■ Your aDF WorkFloW

164

Initial Versioning of an Entire Application
This section describes how to version an application using Git. Because Git is a
distributed version control system, you normally commit changes to your private, local
repository first and then push your changes to a central repository. Because Git is already
integrated with JDeveloper, you don’t have to download and install it.

 ■ Tip If you are using any oracle Cloud service (like Java Cloud Service), the oracle
Developer Cloud Service (DCS) is included and available to you at no extra cost. this service
includes a central Git repository and many other tools. If you plan to use DCS, refer to the
specific section on DCS later in this chapter.

As mentioned earlier, your lead developer or architect should build all the necessary
workspaces before development starts. He should also place all files under version
control. This process involves four steps:

 1. Initialize your ADF base directory as a local Git repository

 2. Add all project files to this local repository

 3. Commit all project files to the local repository

 4. Push the local repository to a central Git repository accessible
to all developers

 ■ Note If you use Team ➤ Version Application, the Import to Git wizard runs and versions
a single application workspace into a Git repository. however, the initialize-add-commit
method versions all workspaces in a directory into the same Git repository, so this is the
recommended approach.

Initializing the Local Git Repository
You start by initializing the directory where all your ADF workspaces and your ADF
library directory reside as a Git repository. A Git repository is just a directory with some
extra files that Git understands. In this chapter, we will refer to this directory as $ADF_
ROOT.

To do this, choose Team ➤ Git ➤ Initialize. This menu item is only active if you have
a nonversioned application workspace open in JDeveloper. In the Initialize Repository
dialog, provide the name of the root directory for all your ADF workspaces and the ADF
library directory, as shown in Figure 7-3.

Chapter 7 ■ Your aDF WorkFloW

165

This adds a hidden .git subdirectory, turning the directory you specify into a Git
repository.

Adding All Files
After this step, you will see in JDeveloper has added a little marker at the bottom left
corner of the icons for all folders and files in the Applications window, as shown in Figure
7-4. If you point to a file or folder with the mouse cursor, the little pop-up field shows Git:
Unversioned.

Figure 7-3. Initializing the Git repository

Figure 7-4. Unversioned application workspace

All the files in the workspace also show up in the Pending Changes window on the
Candidates tab. If this window did not open automatically as a new tab next to the Log
window at the bottom of the screen, you can open it by choosing Team ➤ Git ➤ Pending
Changes.

To add all files, choose Team ➤ Git ➤ Add all. The Add All window appears and can
be resized as shown in Figure 7-5.

Chapter 7 ■ Your aDF WorkFloW

166

Notice that the Add All dialog includes all files from all workspaces under your
$ADF_ROOT. Because you initialized the $ADF_ROOT directory as one Git repository,
Add All works on all files in this directory and its subdirectories.

The marker on the icons in the Applications window changes to a plus sign and all
files move to the Outgoing tab in the Pending Changes window, as shown in Figure 7-6.

Figure 7-5. The Add All dialog, expanded

Figure 7-6. Files added and ready to be committed to Git

Chapter 7 ■ Your aDF WorkFloW

167

Committing All Files
To commit all files to your local Git repository, choose Team ➤ Git ➤ Commit All from
the JDeveloper main menu or Versioning ➤ Commit All from the context menu in the
Applications window. The Commit All dialog appears as shown in Figure 7-7.

Figure 7-7. The Commit All dialog

Make sure you check the Commit non-staged files check box. Git actually works
with a separate staging area, and files can be Staged or Not Staged (you can see this in
the Status column in the Pending Changes window). Advanced Git users can use this
feature to commit only some of the changed files by controlling whether they are staged
or not. For everyday Git use, simply check the check box and commit all files whether
staged or not.

Chapter 7 ■ Your aDF WorkFloW

168

Working with a Central Repository
When you commit files from JDeveloper, the change is stored in your local Git repository
(the $ADF_ROOT catalog you initialized earlier). The fact that you work against the local
repository makes commits very fast, and there is no risk that code you commit will break
anybody else’s code.

Of course, files stored in your local repository are only one hard disk crash away
from oblivion, so you want to push your changes to a common repository for safekeeping
and to allow others to use the latest code when they want. For this, you need a central
repository for your team.

If you are using the Oracle Cloud, you have access to Oracle Developer Cloud Service
at no cost, and that includes a central Git repository. If not, you will need to either set up a
central Git instance for your team or use a hosted solution like GitHub (www.github.com).

Pushing to a Central Git Instance
To push your application to GitHub, you create a GitHub account, log on, and create
empty repositories for each workspace (foundation, subsystems, master). Do not
initialize them with a README file—they will be filled from JDeveloper. When you have
your repositories ready, you choose Versioning ➤ Push from the context menu in the
Applications window or Team ➤ Git ➤ Push from the JDeveloper main menu. The Push to
Git wizard helps you get each application workspace into the remote repository.

The process is similar if you are running your own central Git instance in your
organization.

Pushing all the application workspaces to the central Git instance is part of the initial
versioning of the application and should be done by the lead developer or architect as
soon as all files have been committed to the local repository.

Cloning Workspaces from the Central Git Instance
Once the lead developer or application architect has pushed the workspaces to a shared
location, each developer can get his own copy from the server. In Git terminology, the
developer clones the repository. To start the Clone from Git wizard, choose Team ➤ Git ➤
Clone.

Enter a remote name (by convention origin) and provide the URL to your
repository. In step 4, provide the local directory where the local Git repository directory
should be placed (your $ADF_ROOT). Because the cloning process will automatically
create a directory with the same name as your Git repository, you should select the
directory you want to be the parent of your $ADF_ROOT. For example, if your Git
repository is called hrdemo, and you choose C:\JDeveloper as local directory, your Git
repository directory becomes in C:\JDeveloper\hrdemo.

After downloading everything, JDeveloper will show you the ADF applications it
found in the repository, and you can choose which applications you want to open in
JDeveloper.

http://www.github.com

Chapter 7 ■ Your aDF WorkFloW

169

Getting Changes from the Central Git Instance
To download changes that other developers have pushed to the central repository server
and merge them into your code, you use Team ➤ Git ➤ Pull from the JDeveloper menu.
The Pull from Git wizard helps you download the changes. If you have merge conflicts
that JDeveloper cannot resolve automatically, they will show up in the Pending Changes
window, where you can choose Resolve Conflict from the right-click menu on each
conflict to resolve it.

Git File Life Cycle
A file can have several different states in Git, as shown in Figure 7-8.

Figure 7-8. Git file status life cycle

When you clone the central repository to your local development workstation, all
files will be committed to the local repository and have status No Change.

When you add a new file, it is Unversioned. It will also show up in the Pending
Changes window on the Candidates tab, as shown in Figure 7-9.

Figure 7-9. Pending Changes, Candidates

Chapter 7 ■ Your aDF WorkFloW

170

When you Add the file by selecting it on the Pending Changes tab and clicking the
green plus icon, or right-clicking the file and choosing Versioning ➤ Add, the file moves to
status Scheduled for Addition. It also disappears from the Candidates tab and appears on
the Outgoing tab, as shown in Figure 7-10.

Figure 7-10. Pending Changes, Outgoing

Files you edit will change to status Modified and also appear on this tab (e.g.,
ApplicationModuleImpl.java in the preceding figure). From the Pending Changes
window, you can right-click and choose Commit All. You can also right-click in the
Applications window and choose Versioning ➤ Commit All.

 ■ Tip Some changes you make in JDeveloper affect multiple files, so it is safest to
always use Commit All to commit changes.

When you choose either of these commands, the Commit All dialog appears where
you can provide a commit comment.

Make sure to check Commit non-staged files check box to commit all files. As
mentioned earlier, Git has some advanced “staging” features, but you normally want to
commit all files irrespective of their staging status.

Using Feature Branches
If you have worked with other version control systems before, you are probably very
reluctant to create new code branches. And it has indeed historically been unreasonably
hard to merge branches back together.

In Git, it is customary to use many more branches. Typically, you create a new
branch for each new feature, and some organizations use separate branches for every bug
fix. There are three main benefits to using feature branches:

•	 Each developer can commit and push as often as he wants

•	 Each developer can merge the mainline into his branch as often
as he wants, so merge conflicts don’t grow large

•	 When building a release, the release manager can decide which
feature branches go into the release branch

Chapter 7 ■ Your aDF WorkFloW

171

Starting a Feature Branch
To start a new branch, choose Team ➤ Git ➤ Create Branch to bring up the Create Branch
dialog, as shown in Figure 7-11.

Figure 7-11. Creating a branch

Name your branch something short, but meaningful. The short name from your
task/issue tracker is normally a good name. Make sure you leave the Checkout Created
Branch check box checked in order to start working on your feature branch. You see the
branch name in square brackets after each project in the Applications window now shows
the name of your branch.

Working on a Feature Branch
Working on a feature branch is no different from other development work. You can
commit freely to your local repository and should push to the central repository at least
twice a day for backup.

While you are working, you might occasionally pull from the central repository if you
know significant changes have been made to code you might be using.

Merging a Feature Branch
Once your feature is complete and committed locally, you switch to the master branch
with Team ➤ Git ➤ Checkout. In the Checkout Revision dialog, you select the master
branch (on the local node). You will see the branch name in the square brackets in the
Applications window update to [master].

Chapter 7 ■ Your aDF WorkFloW

172

Then do a Git pull to get the latest changes to the master branch followed by a Git
merge. In the Merge dialog, select your feature branch (under the Local node) and click
OK. Normally, the merge happens automatically without error. If there are any merge
conflicts, they will show up in the Pending Changes window marked with an exclamation
mark. Right-click and choose Resolve Conflict to open the conflict resolution window,
where you can choose which change goes in first, or manually create new merged code.

After the merge, you push the changes to the central repository. The Push to Git
dialog allows you to choose the branches you want to push. Make sure to push the
new merged master. It is also good practice to push the feature branch in case another
developer will have to work on it sometime in the future.

Quality Assurance
Part of your ADF workflow must be to ensure that your code is well written, well
documented, and correct. All of the usual tools of the trade apply to ADF applications, but
JDeveloper offers a few extra features.

Auditing Your Code
On the Build menu, you find an entry called Audit…. If you choose this, you are asked to
select a profile and can then run an automated code audit. Note the Edit button—this
calls up the Audit Profile dialog shown in Figure 7-12.

Figure 7-12. Editing audit profiles

Chapter 7 ■ Your aDF WorkFloW

173

In this dialog, you decide which rules are active in which profile.
When you run the audit, you get a lot of results in an expandable tree, as shown in

Figure 7-13.

In the toolbar above the result tree, you can change the display and turn of lower-
priority issues. In a collapsed node in the tree, the value in the Severity column is the
highest found in that node or its subnodes.

If you find that a specific warning does not help you, you can edit the profile to stop
running that test. You can also hide all issues of a specific type by right-clicking one
instance.

 ■ Tip Volunteers from the oracle aDF enterprise Methodology Group (aDF eMG) have
developed extra audit rules specifically for aDF. See https://adfaudit.atlassian.net/
wiki/spaces/ADFAUDIT

Figure 7-13. Audit result

https://adfaudit.atlassian.net/wiki/spaces/ADFAUDIT
https://adfaudit.atlassian.net/wiki/spaces/ADFAUDIT

Chapter 7 ■ Your aDF WorkFloW

174

Documenting
JDeveloper offers to automatically produce Javadoc documentation for you if you choose
Build ➤ Javadoc …. Naturally, the usefulness of the documentation depends on the
amount of Javadoc comments you have placed in your code.

You can also document your visual task flows. When the Diagram tab is active,
JDeveloper shows a Diagram menu, and the Publish Diagram menu item saves a PNG file
of your diagram you can use in your documentation.

To document business components, you can create a Business Component Diagram
with File ➤ New ➤ From Gallery ➤ General ➤ Diagrams. This gives you a blank diagram
that you can drag and drop your ADF business components onto.

Build Process
You’ve seen how a developer can use the context menu to deploy an application to an
ADF library, and to deploy the master application as a deployable EAR file. But in a
modern, professional development environment, this process should be automated and
run by a script. Fortunately, JDeveloper helps you do that.

This section describes how to build with Apache Ant, which is a very flexible build
tool compatible with any project structure. To define an Ant build, you need to create a
buildfile (normally called build.xml) that contains a number of targets like compile or
deploy.

 ■ Note apache Maven is a more modern build tool that also handles dependency
management, and from version 12c, JDeveloper also supports Maven. Since Maven
assumes a standard directory structure that doesn’t match the default aDF project, it takes
some Maven skills to build aDF projects with Maven. If you have those skills, Maven is also
a good choice as build tool.

Because the build scripts include directory names, including the complete path
to where JDeveloper is installed, all developer workstations should be set up with
JDeveloper and the $ADF_ROOT directory in the same location.

Building One Project
To build one project with Ant, you can choose File ➤ New ➤ From Gallery ➤ General ➤
Ant ➤ Buildfile from Project. The Create Buildfile from Project dialog appears as shown in
Figure 7-14.

Chapter 7 ■ Your aDF WorkFloW

175

Make sure you check the Include Packaging Tasks (uses ojdeploy) check box. This
option means that JDeveloper will include build tasks for actually packaging everything
up into ADF libraries. The tasks that JDeveloper include in your build file depend on the
ojdeploy utility installed with JDeveloper. There is currently no way to install only the
ojdeploy utility on a build server, so you have to install JDeveloper on your build server in
order to be able to use ojdeploy.

The autogenerated build file for a project will build all deployment profiles and all
dependent projects. To build only what you need, you should delete any superfluous
deployment profiles like the default profile created by JDeveloper.

In all ADF workspaces, JDeveloper by default registers a dependency from the view/
controller project to the model project. The Ant build respects this dependency and
automatically builds the model project when you build the view/controller. This means
you only have to create an Ant build file for the view/controller project in each subsystem
workspace.

When you create the buildfile for a project, JDeveloper creates a build.properties
file containing various settings and directory names, and the build.xml file itself. These
files show up in the Applications window under the Resources node.

The build.xml looks similar to the one in Listing 7-1.

Figure 7-14. Creating a buildfile from a project

Chapter 7 ■ Your aDF WorkFloW

176

Listing 7-1. Autogenerated build.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<!--Ant buildfile generated by Oracle JDeveloper-->
...
<project xmlns="antlib:org.apache.tools.ant" name="DeptEmpView"
 default="all" basedir=".">
 <property file="build.properties"/>
...
 <target name="init">
 <tstamp/>
 <mkdir dir="${output.dir}"/>
 </target>
 <target name="all" description="Build the project"
 depends="deploy,compile,copy"/>
 <target name="clean" description="Clean the project">
 <delete includeemptydirs="true" quiet="true">
 <fileset dir="${output.dir}" includes="**/*"/>
 </delete>
 </target>
 <target name="deploy" description="Deploy JDeveloper profiles"
 depends="init">
 <taskdef name="ojdeploy"
 classname="oracle.jdeveloper.deploy.ant.OJDeployAntTask"
 uri="oraclelib:OJDeployAntTask"
 classpath="${oracle.jdeveloper.ant.library}"/>
 <ora:ojdeploy xmlns:ora="oraclelib:OJDeployAntTask"
 executable="${oracle.jdeveloper.ojdeploy.path}"
 ora:buildscript="${oracle.jdeveloper.deploy.dir}/ojdeploy-build.xml"
 ora:statuslog="${oracle.jdeveloper.deploy.dir}/ojdeploy-statuslog.xml">
 <ora:deploy>
 <ora:parameter name="workspace"
 value="${oracle.jdeveloper.workspace.path}"/>
 <ora:parameter name="project"
 value="${oracle.jdeveloper.project.name}"/>
 <ora:parameter name="profile"
 value="${oracle.jdeveloper.deploy.profile.name}"/>
 <ora:parameter name="nocompile" value="false"/>
 <ora:parameter name="outputfile"
 value="${oracle.jdeveloper.deploy.outputfile}"/>
 </ora:deploy>
 </ora:ojdeploy>
 </target>
 <target name="compile" description="Compile Java source files"
 depends="init">

Chapter 7 ■ Your aDF WorkFloW

177

 <javac destdir="${output.dir}" classpathref="classpath"
 debug="${javac.debug}" nowarn="${javac.nowarn}"
 deprecation="${javac.deprecation}" encoding="Cp1252"
 source="1.8" target="1.8">
 <src path="src"/>
 </javac>
 </target>
 <target name="copy" description="Copy files to output directory"
 depends="init">
 <patternset id="copy.patterns">
...
 <include name="**/*.xml"/>
 <include name="**/*.xsd"/>
 <include name="**/*.xsl"/>
 <exclude name="build.xml"/>
 </patternset>
 <copy todir="${output.dir}">
 <fileset dir="src">
 <patternset refid="copy.patterns"/>
 </fileset>
 <fileset dir=".">
 <patternset refid="copy.patterns"/>
 </fileset>
 </copy>
 </target>
</project>

You can see the target all depends on deploy, compile, and copy. This means that if
you choose to build the all target, all the dependent build targets are also built. Most of
these tasks use just standard Ant functionality documented at http://ant.apache.org/
manual. The ADF-specific task is ojdeploy, found in the deploy target. This task point to
the ojdeploy class necessary to build and sets the necessary parameters. The effect of this
target is the same as manually building a deployment profile from within JDeveloper.

Building the Master Application
Before you create the build.xml file for the master application, you need to make
sure you have a WAR deployment profile for the view/controller project, and an EAR
deployment profile for the application.

The WAR deployment profile is created under project properties under the
Deployment node in the same way subsystem ADF library deployment profiles are
created.

The EAR deployment profile is part of the application properties. Choose Application
➤ Application Properties ➤ Deployment to create an EAR File deployment profile. Include
the master view project on the Application Assembly node.

http://ant.apache.org/manual
http://ant.apache.org/manual

Chapter 7 ■ Your aDF WorkFloW

178

Once you have these two deployment profiles, create an Ant build for the application.
This is done with File ➤ New ➤ From Gallery ➤ General ➤ Ant ➤ Buildfile from
Application. The build file and the build properties file for the application show up in
the Application Resources section of the Applications window, not under the project. You
can build the complete application by right-clicking the build file and choosing Run Ant
Target ➤ deploy.

Building Foundation and Subsystems
To build all the subsystems, you can add a new target to your master build file that
uses <ant> tasks to call the Ant scripts from the subdirectories. If your buildfiles have
the default build.xml name, you simply need to point Ant to all your foundation and
subsystem directories. Your new target could look like Listing 7-2.

Listing 7-2. Ant Target Calling the Build Target for Foundation and Subsystems

<target name="buildsub"
 description="Build foundation and subsystems">
 <ant dir="${basedir}/../HrDemoFoundation/BCBase"
 inheritall="false"/>
 <ant dir="${basedir}/../HrDemoFoundation/CommonModel"
 inheritall="false"/>
 <ant dir="${basedir}/../HrDemoFoundation/CommonUI"
 inheritall="false"/>
 <ant dir="${basedir}/../HrDemoDeptEmp/DeptEmpView"
 inheritall="false"/>
 ...
</target>

Depending on your directory layout, you might need to tweak the references to the
other build files. You can debug your Ant script by right-clicking it in JDeveloper and
choosing Debug Ant Target and then your target. This gives you more verbose output you
can use to find any errors.

The inheritall=false is an instruction to Ant to not send the master buildfile
parameters to the subsystem builds, allowing the subsystems to use their individual
build.properties files.

Copying ADF Libraries
All the foundation and subsystem ADF libraries are by default built in their respective
deploy directories. You need to copy them to your common ADF library location by
writing another target that uses ant copy tasks. This target could look as shown in
Listing 7-3.

Chapter 7 ■ Your aDF WorkFloW

179

Listing 7-3. Ant Target Copying All ADF Libraries to Common Location

<target name="copysub"
 description="Copy foundation and subsystems ADF libs">
 <copy
 file="${basedir}/../HrDemoFoundation/BCBase/deploy/
 adflibBCBase.jar"
 todir="${basedir}/../adflibHrDemo"/>
 <copy
 file="${basedir}/../HrDemoFoundation/CommonModel/deploy/
 adflibHrDemoCommonModel.jar"
 todir="${basedir}/../adflibHrDemo"/>
 <copy
 file="${basedir}/../HrDemoFoundation/CommonUI/deploy/
 adflibHrDemoCommonUI.jar"
 todir="${basedir}/../adflibHrDemo"/>
 <copy
 file="${basedir}/../HrDemoDeptEmp/DeptEmpView/deploy/
 adflibDeptEmp.jar"
 todir="${basedir}/../adflibHrDemo"/>
 ...
</target>

 ■ Note the file= parameter in the preceding listing should be on one line: it is wrapped
only because of the limitations of the book format.

Combined Build
Finally, you can modify the deploy target to depend on these two new tasks, like this:
<target name="deploy" depends="buildsub,copysub" ... >. This ensures that they
are always called before deployment, first buildsub and then copysub.

With this approach, you can build the entire application including all ADF libraries
and the master application EAR with one Ant build instruction that can be run manually
or integrated into any continuous build tool you might be using.

Using Developer Cloud Service
If you are using any Oracle Cloud services, the Oracle Developer Cloud Service (DCS)
is included at no extra cost. This cloud-based service offers a comprehensive set of
integrated development support features, including

•	 Git repository

•	 Code review workflow

•	 Task/Issue tracker

Chapter 7 ■ Your aDF WorkFloW

180

•	 Wiki

•	 Build server

•	 Deployment to other Oracle Cloud services

Other vendors like Atlassian or GitHub offer similar services, but since the Oracle
service is free if you have other Oracle Cloud services, it might make sense for you to try
it out.

Creating Users
The first step is to create your developers as users of the Oracle Developer Cloud Service.
Starting from the Sign In link on http://cloud.oracle.com, you need to select which
data center your cloud services are running in, along with your identity domain, and
enter your username and password. All this information can be found in the welcome
e-mail you receive from Oracle when you sign up for the Oracle cloud.

From the Oracle Cloud dashboard, you can click the Users button at the top right to
define your developers as users of Oracle Cloud services. In the Add User dialog shown
in Figure 7-15, make sure to assign the correct roles to your developers. To use Developer
Cloud Service, your developers need the Developer Service User Role, and your lead
developers and architects will probably need Developer Service Administrator.

Figure 7-15. Assigning roles to Developer Cloud Service users

http://cloud.oracle.com/

Chapter 7 ■ Your aDF WorkFloW

181

At the time of writing, this is not a very intuitive process. To assign the
developer service user role, first select the developer service (called something like
developer69750), then check the check box Other Roles, and finally click the ➤ link to
assign that role to the user. To assign the developer service administrator role, you check
the corresponding check box. Hopefully, this process will have been made more user-
friendly by the time you read this book.

The newly created user now receives an e-mail with account information and a
temporary password.

Creating Projects
Developer Cloud Service (DCS) can contain many independent projects. These are
projects in the real meaning of the word, not the limited JDeveloper projects. You
can create projects through the DCS web interface, but when working with multiple
JDeveloper workspaces in a modular or enterprise ADF architecture, it is easier to create
your project from JDeveloper. This is a task done once by the lead developer or architect
once the initial workspaces are created.

Connecting to Developer Cloud Service
To begin, you need to create a connection to your cloud service instance from JDeveloper.
This is done from the JDeveloper main menu under Team ➤ Team Server ➤ Add Team
Server. In the New Team Server dialog, provide a name for your service and the URL. You
can copy the URL from the welcome mail or your web browser—it will be something like
https://developer.us2.oraclecloud.com/developer12345-a667788.

Then select Team ➤ Team Server ➤ (your service name) ➤ Login.

 ■ Note to log on with a newly created oracle Cloud user, you must log on through your
web browser once to set your password and other authentication information.

Creating a Project
When you are logged in, choose Team ➤ Team Server ➤ (your service name) ➤ New
project. The New Project on Oracle Developer Cloud Service dialog appears. In the
first step, you provide a project name and a few other pieces of information. The
Private/Shared setting controls if the project is only accessible to users who have
explicitly been granted access, or to all users that are part of your identity domain.

In step two of the wizard, shown in Figure 7-16, you select the directory where you
want your local Git repository to be placed, and select all the application workspaces you
want to be part of this Git repository and Developer Cloud Service project.

https://developer.us2.oraclecloud.com/developer12345-a667788

Chapter 7 ■ Your aDF WorkFloW

182

In the final step, you are given a confirmation that explains that your application
workspaces will be moved to the new local repository location. The process then runs
for a while, moving the workspaces and creating a new project on the Developer Cloud
Service.

When the process completes, you need to open one of the application workspaces
from the new location. If you have any workspaces open from the original location,
close these. The Pending Changes window will show the files in your workspace on the
Candidates tab. Since the local and the central repository is Git, the same commands as
described earlier apply: first you Add All and then you Commit All.

 ■ Note Notice in the Commit all dialog box that your Developer Cloud Service is now
automatically listed at the bottom under Task Repository. We’ll get back to that later in this
chapter.

When everything is committed to the local repository, do a Push to the central
repository. When you look at your Developer Cloud Service instance from a web browser,
you can now see your new project. When you open it, you see the project view shown in
Figure 7-17.

Figure 7-16. Adding application workspaces to Developer Cloud Service

Chapter 7 ■ Your aDF WorkFloW

183

If you set your project to Private, you will have to add all relevant developers to your
project on the TEAM tab (to the far right). If you set your project to Shared, all your Oracle
Cloud users with the developer service user role can work on it.

Task Management
The Developer Cloud Service also has a task/issue tracking feature. You can create them
from within JDeveloper in the Team window (where they are called Tasks) or through the
web interface (where they are called Issues). JDeveloper automatically keeps the tasks in
JDeveloper in sync with the tasks on the server.

The tasks have all the usual attributes, including priority, product, component,
assignment, due date, estimate, time tracking, and so on.

One interesting feature is that you can add private details to a task, including notes
and a date you personally schedule that task for.

If you use Developer Cloud Service, you should make use of this built-in task
management, because you can choose a task each time you commit code to Git. This
allows you full visibility into which code changes are associated with which task.

Working on Code
Developer Cloud Service uses Git, so the workflow is similar to the regular Git workflow
described earlier in this chapter: create a feature branch and check it out, make your code
changes in the branch, and commit regularly to the local repository.

When JDeveloper is connected to a Developer Cloud Service instance, the Commit
dialog allows you to note which task the commit belongs to, as shown in Figure 7-18.

Figure 7-17. A project in Developer Cloud Service

Chapter 7 ■ Your aDF WorkFloW

184

Note that you can select a task to associate with the commit. You can also choose to
close the task when committing and/or add task information to the commit comment.
You decide whether to do this as soon as you commit locally (After Commit) or not until
you push the change to the central repository (After Push).

Code Review
When you are ready to submit your change to the central repository, you push your
feature branch. Don’t do a local merge when working with Developer Cloud Service.

When your feature branch has been pushed, go to the Merge Requests section on the
DCS web pages and click New Merge Request. Select that you want to merge your feature
branch with the master, as shown in Figure 7-19.

Figure 7-18. Commit dialog when connected to Developer Cloud Service

Chapter 7 ■ Your aDF WorkFloW

185

In the second step of this wizard, choose the issue to link this merge request to, and
select code reviewers.

The code review will now see this code request under Assigned to Me. When the
reviewer opens it, he can see all changed files and commits and can comment either on
the review in general or on specific code lines, as shown in Figure 7-20.

Figure 7-19. Creating a new merge request

Figure 7-20. Commenting on a merge request

Chapter 7 ■ Your aDF WorkFloW

186

Once the merge request has been approved, the feature branch can then actually
be merged into the master branch. If you want, you can also let Developer Cloud Service
delete the feature branch once the commit is complete.

 ■ Tip Code reviews are often neglected in projects due to poor tool support. If you are
using Developer Cloud Service, it is highly recommended to make use of this merge request
feature.

Other Developer Cloud Service Features
The Developer Cloud Service also has other features, including

•	 Wiki: Normal wiki functionality for documentation of all kinds.

•	 Snippets: The ability to store useful pieces for code, either
privately for yourself or shared with other developers on the
project.

•	 Agile: A couple of boards and reports useful when developing in
accordance with agile methodology.

•	 Build: A build server where you can define jobs to automatically
build and test your code. Offers various trigger points and build
steps using Ant, Maven, SQL, shell scripts, and other tools.

•	 Deploy: The ability to define deployment configurations so you
can automatically deploy your code to Oracle Java Cloud Service,
for example.

Conclusion
Using the workflow described in this chapter, you can build high-quality enterprise
applications. Together with the information from previous chapters about drag-and-
drop building basic applications, enterprise architecture, user interface design, business
logic, and logging and debugging, you are ready to work on real-life enterprise ADF
applications.

187© Sten Vesterli 2017
S. Vesterli, Oracle ADF Survival Guide, DOI 10.1007/978-1-4842-2820-3

��������� A
Accessors, 88
ADF EMG Task Flow Tester, 49
ADF Form layout, 26
ADF libraries

containing ADF BC base classes, 35
deployment profile, 33
managing, 34
refresh dependencies, 35
using, 34, 74

ADF Model Tester, 8, 9, 153, 154
ADF skin, 48
ADF table layout, 26
Agile development approach,

161, 162, 186
Apache Ant

autogenerated build file, 175–177
copy libraries to common

location, 178–179
create file, 174
before deployment, 179
EAR deployment profile, 177
foundation and subsystems, 178
ojdeploy, 175, 177
WAR deployment profile, 177

Application development framework
(ADF)

binding layer, 3
business components

application modules, 4
associations, 3
entity objects, 3
packages, 6
view links, 4
view objects, 4

business services layer, 1–2
high-level architecture, 2

task flows
bounded, 17
unbounded, 17

user interface layer, 2
workspaces creation, 3
Application modules, 15–16
view object instances, 15
Architecture models, ADF
deploying, 39
enterprise, 37–39

application, 39
master application, 39
subsystems, 39

modular, 35–36, 130
master application, 37
subsystems, 37

Associations, 3
building, 10–11
Attribute value
accessing from managed

bean, 109, 119–120
adding to page, 3

��������� B
BackingBean scope, 110, 111
Beans

BackingBean scopes, 110
managed (see Managed beans)
storing state, 131
using stored state, 132–133

Binding layer, 3
accessing from managed

beans, 117–118
action binding, 28, 118
attribute binding, 28, 118
tree binding, 28, 118

Bind variables, 14, 16

Index

■ INDEX

188

Bounded task flows
creating, 18, 109

Breakpoint, 145–146
in code, 145
customizing, 145
in source code from library, 145
in task flow, 146

Build process
building one project, 174–177
combined build, 179
copying ADF libraries, 178–179
foundation and subsystems, 178
master application, 177–178

Build server, 186
Business components

application module, 4, 15–16
associations, 3, 10
base classes, 42–45
data manipulation methods, 42
entity object code, 3, 48
explicit, 40–42
file, 154, 155
implicit, 40
interacting with from bean, 113–114
preferences, 5, 6
from tables, JDeveloper wizard, 6
testing, 8–9
view links, 4, 13–14
view objects, 4, 11–15

Business logic, 129
Business services layer, 2, 3, 6, 8, 12

��������� C
Cascading Style Sheet (CSS), 67
Client interface, creating, 102, 103
Commit, 27
Component reference

creating, 113–116
Content style, 69
Control flow, 19–20, 27

��������� D
Database business components

application module, 4, 15–16
entity objects, 3, 9–10
JDeveloper preferences dialog, 5
list of values, defining, 12–13
view objects, 4, 11–15

Database connection, 34
name, 6

Data Controls, 24, 25, 27
Debugging

ADF Data tab, 148
in ADF libraries, 149–152
Data tab, 147, 148
Data window, 148
EL Evaluator, 147, 148
run in debug mode, 146
setting breakpoint, 145–146
Smart Data tab, 147, 148
source code, 150
task flows, 148–149
Watches tab, 148

Declarative validation
in entity objects, 80–82
in user interface components, 106

Default values, 78–80
defining with Groovy, 78, 79

Deploying, 39, 51
ADF applications, 39
deployment profile, 33, 34
source code, 150
to test and production, 52

Design view, 22
Developer Cloud Service (DCS)

add users, 180–181
agile methodology, 186
build server, 186
code review, 184–186
connection, 181
create projects, 181
deployment configurations, 186
features, 179–180, 186
project, creating, 181–183
snippets, 186
task management, 183
Wiki, 186
working on code, 183–184

Distributed version control
system, 164

Drag-and-drop pages
implementing navigation, 27
viewing

design, 22
Dynamic regions, 130

��������� E
EL evaluator, 147, 148
Enterprise ADF architecture, 38

application foundation layer, 39
enterprise foundation, 38

■ INDEX

189

master application, 37
subsystems, 37

Entity collection class, 86
Entity objects, 3, 9–10

attribute labels, 9
building, 9–10, 40
collection validation, 81, 82
declarative validation, 80–82
default values, 78–80
Entity Definition Class, 86
Entity Object Class, 86
generating Java, 40
logic, 77–94
method validation, 83–84
override methods, 78, 87
regular expression validation, 81
script expression validation, 83
sharing, 48
transient attribute, 88–90
triggers, 85
UI hints, 10, 12, 27
validation failure

handling, 84–85
Execution Context ID (ECID), 137
Explicit business components, 40
Expression language, 20, 148

��������� F
Facets

footer in panel form layout, 59
in layout components, 54
in panel collection

layout, 60, 61
Failure handling, 84
Fixed formatting, 54
Foundation layer, 36–37

��������� G
Git

cloning process, 168
pull process, 169
push process, 168
commit all files, 167
feature branches

benefits, 170
create, 171
merge, 171–172
working, 171

initialize repository, 164–165
life cycle, 169–170

local repository, 168
Pending Changes window,

165, 166
steps, 164
unversioned application, 165

Graphical navigation flow design
bounded task flows, 17
task flows creation

control flow, 19
return activity, 19

Groovy expression, 79, 80, 85
trusting, 85

��������� H
Handling database triggers, 90
High-level architecture, 2

��������� I
Implicit business components, 40
Iterator, 124

accessing from managed bean,
121–123

��������� J, K
JavaServer Faces (JSF), 53
JavaServer Pages (JSP), 53
JDeveloper, 118

configure logging, 141
configuring ADF BC base

classes, 45
create workspaces, 159–160
log window, 147
offline table, 161
persistent loggers, 141
preferences, 159
reset windows, 22
working sets, 35
workspaces, 159–160

��������� L
LabelStyle, 69
Layout components, 53

decks, 63
masonry layout, 63–64
nonstretching, 54–55
panel accordion

component, 62
panel collection layout, 60–61

■ INDEX

190

panel dashboard, 63
panel form layout, 59–60
panel grid layout, 56–58
panel splitter component, 63
panel stretch layout, 63
panel tabbed component, 63
show detail, 63
spacer, 63
stretching, 54–55

Layout managers, 54
Lists of values, 12–13

defining, 12–13
sharing, 36
UI hints, 13

Logging
ADF logger, 137
configuring, 140–141
example, 139
in Java classes, 137
Log4J, 137
log level, 137, 138, 140
log threshold, 140, 141
persistent loggers, 141
reading log statements, 142–143
root logger, 142
transient loggers, 141

Logic in application modules,
100–102

adding custom, 102
creating client

interface, 102
Java object, creating, 100

Logic in entity objects, 77–94
attribute accessors, 88–90
calling stored procedures,

91–92
default values, 78–79
handling database triggers, 90
Java objects, creating, 85–88
masking attribute values, 88–90
replacing standard database

operations, 92–93
Logic in view objects

creating client interface, 96
enabling and disabling view

criteria, 96–97
java objects, creating, 94–95
permanent filtering, 97–98
view accessors, 100
view object class logic, 96
view row classes, 94

��������� M
Managed beans, 108–113

added to task flow, 112
adding to button, 110–112
adding to databound

component, 112–113
adding to task flow, 112, 113
adding to user interface, 110
application scope, 109
bean classes, 108–109
button, 110
classes, 108
component reference, 113
creating, 110–111
managed properties, 133
page flow scope, 110
request, 110
scope, 109
serializable, 109
session scope, 109
short-lived, 109
storing state, 131–132
task flow, 113, 128–129
using in task flows, 110
using stored state, 132–133
validator method, 112
view scope, 110

Managed properties, 133
Masonry layout

best practice, 65–66
brick alignment at runtime, 65
brick size, 64
example, 64–66

Master application
building, 13, 14, 50–52, 130–131
content, 50
enterprise architecture, 39
modular architecture, 39
security, 50–52

access rights, 51
built-in WebLogic, 52
configure ADF security wizard, 51

Master page, 29–31
building, 29, 130–131
refreshing, 135

Match media behavior, 63
Message

aligned with user interface
component, 108

in default position, 125–126
using a message area, 128

Layout components (cont.)

■ INDEX

191

Method validation, 83
Mini-map, 146
Modular ADF architecture

foundation layer, 36–37
master application, 37
subsystems, 37

��������� N
Navigation flow, 16–20

��������� O
Operation, 27

accessing from managed bean,
120, 121

adding to page, 27
Oracle ADF Model Tester, 8
Oracle Management Cloud, 144

��������� P
Package

default for business components, 5
Page flows, 17, 110
PageFlow scope, 111, 132
Page fragment, 17–22, 25, 27, 29, 47, 48
Page template, 46–47

attributes, 47
facets, 47

Panel accordion component, 62, 63
Panel collection layout, 60–61

with ADF table, 61
Panel form layout, 59–60
Panel grid layout, 56–59

creating your own, 57–59
example, 56
spans, 58
wizard, 57

Partial triggers property, 97, 135
Persistent loggers, 141
Prebuilt validators, 105–108
Preferences

setting in JDeveloper, 5

��������� Q
Quality assurance

auditing code, 172–173
documenting, 174

Quick Start layouts, 21, 55–56
using, 46, 55

��������� R
Reading logs, 142

in JDeveloper, 142–143
in Oracle Diagnostic Log

Analyzer, 142–144
in other tools, 144

Regular expression, 81
Resources window, 34, 35
Responsive design

masonry layout, 63–64
Return activity, 19

outcome, 19
Rollback, 27
Router activities, 20

��������� S
Script expression validation, 83
Security

access rights, 51
application roles, 51
configure, 51

Selected rows, in ADF table, 123–124
Short-lived beans, 109
Show detail item, 62, 63
Simple ADF architecture, 35
Skin

in ADF library file, 74
creating, 72–73
CSS files, 53, 64, 69, 75
design view in JDeveloper, 75
exporting, 74
JDeveloper skin editor, 75–76
modifying, 73
selectors view in JDeveloper, 76
testing, 74–75
Theme Editor, 71–72

Snippets, 186
Source control

adding all files, 165–166
central Git instance, 168

cloning workspaces, 168
getting changes, 169
push process, 168

central Git repository, 168
committing all files, 167
feature branches

merging, 171–172
starting, 171
working, 171

Git life cycle, 169–170

■ INDEX

192

initializing local Git repository,
164–165

initial versioning of entire
application, 164

Source code
adding ADF source from Oracle, 152
adding to JDeveloper, 153
adding to project, 153
deploying, 150
procedure for getting from

Oracle, 153
to project, 154
Source Code Agreement (SCA), 153

Source view, 23
Structure window, 23–24
Styling

conditional, 70
ContentStyle, 69
InlineStyle, 68
LabelStyle, 69

Subsystems
building, 15, 49–50, 130
enterprise architecture, 39
modular architecture, 35–36

Switching logic
task flow, 129–135

��������� T
Task flows, 17, 18, 20

bounded, 17
calling managed beans, 128–129
creating, 18, 113, 130
router component, 129
switching logic, 129–135
testing with ADF EMG task flow

tester, 49, 50
unbounded, 17

Templates, 46
page, 46
page fragment, 47
task flow, 48

Theme Editor, 71–72
Transient loggers, 141

��������� U
Unbounded task flows, 17
User experience (UX), 157, 158

User interface components
connecting bean, 116–117
declarative validators, 106
redrawing, 135

User interface layer, 2, 18

��������� V
Validation failure message, 83–85
Validators, prebuilt, 105–108
Verbose Server Log, 142, 143
View components, 18–19
View criteria, 14–15
View links, 1

building, 13–14, 49
View objects, 4, 11

attribute labels, 26
building, 11–12, 49, 120
ordering of records, 12

Virtual Private Database (VPD), 101

��������� W, X, Y, Z
WebLogic, integrated, 52

debug mode, running in, 146
running your application, 52

WebLogic, standa-lone, 144
configuring logging, 140–142

Wiki, 186
Work process

agile development approach,
161, 162

application architecture, 158
constructing application, 162
create database, 160–161
create workspaces, 159–160
database changes, 162–163
development standards, 159
foundation changes, 163
initial application, 161
initial foundation, 160
preferences, 159
regression test, 163
user experience, 157, 158

Workspace
ADF Fusion Web Application, 36
creating, 3, 18, 71, 159–160
dependencies, 33
model project, 3
view/controller project, 3

Source control (cont.)

www.ioug.org/join

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Drag-and-Drop Building
	Anatomy of an ADF Application
	Business Services Layer
	User Interface Layer
	Binding Layer
	Creating ADF Workspaces

	Database Business Components
	Keeping Organized
	The Demo Wizard
	Testing Business Components
	Entity Objects
	Building Entity Objects
	Building Associations

	View Objects
	Building View Objects
	Defining Lists of Values
	Building View Links
	Creating View Criteria

	Building Application Modules

	Graphical Navigation Flow Design
	Partitioning Your Applications
	Bounded and Unbounded Task Flows
	Unbounded Task Flows
	Bounded Task Flows

	Creating Task Flows
	Adding View Components
	Adding a Return Activity
	Adding Control Flow

	Drag-and-Drop Pages
	Page Layout
	Viewing Your Page
	Design View
	Source View
	Structure Window

	Adding Data-Bound Components
	Adding a View Object Instance
	Adding an Individual Attribute
	Adding an Operation
	Adding Commit and Rollback

	Implementing Navigation

	Examining Bindings
	Minimum Viable Product
	A Simple Master Page

	Conclusion

	Chapter 2: ADF Enterprise Architecture
	ADF Libraries
	Creating ADF Libraries
	Managing ADF Libraries
	Using ADF Libraries

	ADF Architecture Models
	Simple ADF Architecture
	Modular ADF Architecture
	Foundation Layer
	Subsystems
	Master Application

	Enterprise ADF Architecture
	Enterprise Foundation
	Application Foundation
	Subsystems
	Master Applications

	Deploying ADF Applications

	Business Component Code
	Implicit Business Components
	Explicit Business Components
	Your Own Base Classes
	Creating Your Own Base Classes
	Using Your Own Base Classes

	Using Templates
	Page Template
	Using Facets
	Using Attributes

	Page Fragment Template
	Task Flow Template
	Application Skin

	Common Model
	Sharing Entity Objects
	Sharing List of Value View Objects

	Building Subsystems
	Building the Master Application
	Master Application Content
	Security
	Running the Configure ADF Security Wizard
	Defining Access Rights
	Running in the Built-in WebLogic
	Deploying to Test and Production Servers

	Conclusion

	Chapter 3: Layout and Skins
	Layout
	Layout Managers vs. Fixed Formatting
	Stretching and Nonstretching
	Quick Start Layouts
	Using Panel Grid Layout
	Panel Grid Layout Example
	Creating Your Own Panel Grid Layout

	Using Panel Form Layout
	Using Panel Collection Layout
	Using Tabs and Accordions
	Panel Tabbed
	Panel Accordion

	Other Layout Components

	Responsive Design
	Masonry Layout
	Brick Size
	Brick Alignment at Runtime
	Masonry Best Practice

	Screen-Dependent Formatting

	Styling
	Inline Styles
	Content Style
	Label Style
	Style Class
	Conditional Styling

	Skinning
	Working with Skins
	Setting Up the Theme Editor
	Creating a Skin
	Modifying a Skin
	Exporting a Skin
	Using a Skin
	Testing
	Working with the JDeveloper Skin Editor

	Conclusion

	Chapter 4: Business Logic
	Logic in Entity Objects
	Default Values
	Validation
	Declarative Validation
	Script Expression Validation
	Method Validation
	Failure Handling
	Using Triggers

	Creating a Java Object
	Accessors
	Working with the Database
	Handling Database Triggers
	Calling Stored Procedures
	Replacing Standard Database Operations

	Logic in View Objects
	Creating Java Objects
	View Object Class Logic
	Enabling and Disabling View Criteria
	Permanent Filtering

	View Row Class Logic
	View Accessors

	Logic in Application Modules
	Overriding Application Module Functionality
	Adding Custom Application Module Logic

	Exposing Logic to Clients
	Conclusion

	Chapter 5: Presentation Logic
	Prebuilt Validators
	Adding Managed Beans
	Bean Classes
	Bean Scope
	Adding a Bean to the User Interface
	Adding a Bean to a Button
	Adding a Bean to a databound Component

	Adding a Bean to a Task Flow

	Interacting with UI Components
	Creating a Component Reference
	Connecting the Bean to the UI Components

	Interacting with Business Components
	The Binding Layer
	Accessing the Binding Layer
	Accessing an Attribute Value
	Accessing an Operation
	Accessing an Iterator
	Working with Selected Rows

	Interacting with the User
	Default Message
	Message Related to a Component
	Using a Message Area

	Logic in Task Flows
	Calling Managed Beans Task Flows
	Using Business Logic in Task Flows
	How to Use Router Components

	Task Flow Switching Logic
	How Dynamic Regions Work
	Building the Master Page
	Storing State
	Using Stored State
	Connecting the Beans
	Connecting Menu Items
	Refreshing the Master Page

	Conclusion

	Chapter 6: Logging and Debugging
	Using ADF Logger
	Adding Logging to Your Classes
	Configuring Logging
	Reading Logs
	Reading Logs in JDeveloper
	Reading Logs in Other Tools

	Normal Debugging
	Setting a Breakpoint
	Running in Debug Mode
	Stepping Through Code
	Gathering Information
	Debugging Task Flows

	Debugging into ADF Libraries
	Deploying Source Code
	Breaking in Library Code

	Adding the ADF Source Code
	Getting the ADF Source Code
	Adding the ADF Source Code to JDeveloper
	Adding the ADF Source Code to a Project

	Tips and Tricks
	If the Model Doesn’t Run
	If the Page Is Empty

	Conclusion

	Chapter 7: Your ADF Workflow
	Work Process
	Design Work
	Application Architecture
	Initial Development
	Development Standards
	Create All JDeveloper Workspaces
	Create the Initial Foundation
	Create the Database
	Initial Application

	Constructing the Application
	Handling Database Changes
	Handling Other Foundation Changes

	Source Control
	Initial Versioning of an Entire Application
	Initializing the Local Git Repository
	Adding All Files
	Committing All Files

	Working with a Central Repository
	Pushing to a Central Git Instance
	Cloning Workspaces from the Central Git Instance
	Getting Changes from the Central Git Instance

	Git File Life Cycle
	Using Feature Branches
	Starting a Feature Branch
	Working on a Feature Branch
	Merging a Feature Branch

	Quality Assurance
	Auditing Your Code
	Documenting

	Build Process
	Building One Project
	Building the Master Application
	Building Foundation and Subsystems
	Copying ADF Libraries
	Combined Build

	Using Developer Cloud Service
	Creating Users
	Creating Projects
	Connecting to Developer Cloud Service
	Creating a Project

	Task Management
	Working on Code
	Code Review
	Other Developer Cloud Service Features

	Conclusion

	Index

